UMMS Affiliation

Program in Molecular Medicine; RNA Therapeutics Institute; UMass Metabolic Network

Date

1-9-2017

Document Type

Article

Disciplines

Biochemistry, Biophysics, and Structural Biology

Abstract

siRNAs are a new class of therapeutic modalities with promising clinical efficacy that requires modification or formulation for delivery to the tissue and cell of interest. Conjugation of siRNAs to lipophilic groups supports efficient cellular uptake by a mechanism that is not well characterized. Here we study the mechanism of internalization of asymmetric, chemically stabilized, cholesterol-modified siRNAs (sd-rxRNAs(R)) that efficiently enter cells and tissues without the need for formulation. We demonstrate that uptake is rapid with significant membrane association within minutes of exposure followed by the formation of vesicular structures and internalization. Furthermore, sd-rxRNAs are internalized by a specific class of early endosomes and show preferential association with epidermal growth factor (EGF) but not transferrin (Tf) trafficking pathways as shown by live cell TIRF and structured illumination microscopy (SIM). In fixed cells, we observe approximately 25% of sd-rxRNA co-localizing with EGF and < 5% with Tf, which is indicative of selective endosomal sorting. Likewise, preferential sd-rxRNA co-localization was demonstrated with EEA1 but not RBSN-containing endosomes, consistent with preferential EGF-like trafficking through EEA1-containing endosomes. sd-rxRNA cellular uptake is a two-step process, with rapid membrane association followed by internalization through a selective, saturable subset of the endocytic process. However, the mechanistic role of EEA1 is not yet known. This method of visualization can be used to better understand the kinetics and mechanisms of hydrophobic siRNA cellular uptake and will assist in further optimization of these types of compounds for therapeutic intervention.

Rights and Permissions

Copyright © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. Citation: Nucleic Acids Res. 2017 Jan 9;45(1):15-25. doi: 10.1093/nar/gkw1005. Epub 2016 Nov 28. Link to article on publisher's site

DOI of Published Version

10.1093/nar/gkw1005

Related Resources

Link to Article in PubMed

Journal Title

Nucleic acids research

PubMed ID

27899655

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.