UMMS Affiliation

Department of Medicine, Division of Cardiovascular Medicine

Publication Date

3-15-2016

Document Type

Article

Disciplines

Cardiology | Cardiovascular Diseases

Abstract

BACKGROUND: Persistent thromboxane (TX) generation while receiving aspirin therapy is associated with an increased risk of cardiovascular events. The Reduction in Graft Occlusion Rates (RIGOR) study found that aspirin-insensitive TXA2 generation, indicated by elevated urine 11-dehydro-TXB2 (UTXB2) 6 months after coronary artery bypass graft surgery, was a potent risk factor for vein graft thrombosis and originated predominantly from nonplatelet sources. Our goal was to identify risks factors for nonplatelet TXA2 generation.

METHODS AND RESULTS: Multivariable modeling was performed by using clinical and laboratory variables obtained from 260 RIGOR subjects with verified aspirin-mediated inhibition of platelet TXA2 generation. The strongest variable associated with UTXB2 6 months after surgery, accounting for 47.2% of the modeled effect, was urine 8-iso-prostaglandin (PG)F2alpha, an arachidonic acid metabolite generated nonenzymatically by oxidative stress (standardized coefficient 0.442, P < 0.001). Age, sex, race, lipid therapy, creatinine, left ventricular ejection fraction, and aspirin dose were also significantly associated with UTXB2 (P < 0.03), although they accounted for only 4.8% to 10.2% of the modeled effect. Urine 8-iso-PGF2alpha correlated with risk of vein graft occlusion (odds ratio 1.67, P=0.001) but was not independent of UTXB2. In vitro studies revealed that endothelial cells generate TXA2 in response to oxidative stress and direct exposure to 8-iso-PGF2alpha.

CONCLUSIONS: Oxidative stress-induced formation of 8-iso-PGF2alpha is strongly associated with nonplatelet thromboxane formation and early vein graft thrombosis after coronary artery bypass graft surgery. The endothelium is potentially an important source of oxidative stress-induced thromboxane generation. These findings suggest therapies that reduce oxidative stress could be useful in reducing cardiovascular risks associated with aspirin-insensitive thromboxane generation.

Rights and Permissions

Citation: J Am Heart Assoc. 2016 Mar 15;5(3):e002615. doi: 10.1161/JAHA.115.002615. Link to article on publisher's site

DOI of Published Version

10.1161/JAHA.115.002615

Related Resources

Link to Article in PubMed

Keywords

aspirin, isoprostane, oxidative stress, thrombosis, thromboxane

Journal/Book/Conference Title

Journal of the American Heart Association

PubMed ID

27068626

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.