UMMS Affiliation

Department of Neurobiology; Freeman Lab; Graduate School of Biomedical Sciences, Neuroscience Program

Date

5-24-2016

Document Type

Article

Disciplines

Neuroscience and Neurobiology

Abstract

Actin, spectrin, and associated molecules form a periodic, submembrane cytoskeleton in the axons of neurons. For a better understanding of this membrane-associated periodic skeleton (MPS), it is important to address how prevalent this structure is in different neuronal types, different subcellular compartments, and across different animal species. Here, we investigated the organization of spectrin in a variety of neuronal- and glial-cell types. We observed the presence of MPS in all of the tested neuronal types cultured from mouse central and peripheral nervous systems, including excitatory and inhibitory neurons from several brain regions, as well as sensory and motor neurons. Quantitative analyses show that MPS is preferentially formed in axons in all neuronal types tested here: Spectrin shows a long-range, periodic distribution throughout all axons but appears periodic only in a small fraction of dendrites, typically in the form of isolated patches in subregions of these dendrites. As in dendrites, we also observed patches of periodic spectrin structures in a small fraction of glial-cell processes in four types of glial cells cultured from rodent tissues. Interestingly, despite its strong presence in the axonal shaft, MPS is disrupted in most presynaptic boutons but is present in an appreciable fraction of dendritic spine necks, including some projecting from dendrites where such a periodic structure is not observed in the shaft. Finally, we found that spectrin is capable of adopting a similar periodic organization in neurons of a variety of animal species, including Caenorhabditis elegans, Drosophila, Gallus gallus, Mus musculus, and Homo sapiens.

Rights and Permissions

Citation: Proc Natl Acad Sci U S A. 2016 May 24;113(21):6029-34. doi: 10.1073/pnas.1605707113. Epub 2016 May 9. Link to article on publisher's site

Freely available online through the PNAS open access option.

DOI of Published Version

10.1073/pnas.1605707113

Related Resources

Link to Article in PubMed

Keywords

STORM, actin, cytoskeleton, neuron, spectrin

Journal Title

Proceedings of the National Academy of Sciences of the United States of America

PubMed ID

27162329

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.