UMMS Affiliation

Department of Microbiology and Physiological Systems

Publication Date

8-2-2016

Document Type

Article

Disciplines

Bacterial Infections and Mycoses | Bacteriology | Immunology of Infectious Disease

Abstract

The rising incidence of antimicrobial resistance (AMR) makes it imperative to understand the underlying mechanisms. Mycobacterium tuberculosis (Mtb) is the single leading cause of death from a bacterial pathogen and estimated to be the leading cause of death from AMR. A pyrido-benzimidazole, 14, was reported to have potent bactericidal activity against Mtb. Here, we isolated multiple Mtb clones resistant to 14. Each had mutations in the putative DNA-binding and dimerization domains of rv2887, a gene encoding a transcriptional repressor of the MarR family. The mutations in Rv2887 led to markedly increased expression of rv0560c. We characterized Rv0560c as an S-adenosyl-L-methionine-dependent methyltransferase that N-methylates 14, abolishing its mycobactericidal activity. An Mtb strain lacking rv0560c became resistant to 14 by mutating decaprenylphosphoryl-beta-d-ribose 2-oxidase (DprE1), an essential enzyme in arabinogalactan synthesis; 14 proved to be a nanomolar inhibitor of DprE1, and methylation of 14 by Rv0560c abrogated this activity. Thus, 14 joins a growing list of DprE1 inhibitors that are potently mycobactericidal. Bacterial methylation of an antibacterial agent, 14, catalyzed by Rv0560c of Mtb, is a previously unreported mechanism of AMR.

Rights and Permissions

Citation: Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4523-30. doi: 10.1073/pnas.1606590113. Epub 2016 Jul 18.Link to article on publisher's site

Freely available online through the PNAS open access option.

DOI of Published Version

10.1073/pnas.1606590113

Comments

Full author list omitted for brevity. For full list of authors see article.

Related Resources

Link to Article in PubMed

Keywords

antimicrobial resistance, arabinogalactan synthesis, methyltransferase, transcription factor

Journal/Book/Conference Title

Proceedings of the National Academy of Sciences of the United States of America

PubMed ID

27432954

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.