UMMS Affiliation

Department of Medicine

Date

4-13-2015

Document Type

Article

Disciplines

Immunity | Immunology and Infectious Disease

Abstract

Activation of different pattern recognition receptors causes distinct profiles of innate immune responses, which in turn dictate the adaptive immune response. We found that mice had higher CD4+ T cell expansion to an immunogen, ovalbumin, when coadministered with CpG than with CL097 in vivo. To account for this differential adjuvanticity, we assessed the activities of CpG and CL097 on antigen-specific CD4+ T cell expansion in vitro using an OT-II CD4+ T cell/bone marrow-derived dendritic cell (DC) co-culture system. Unexpectedly, ovalbumin-stimulated expansion of OT-II CD4+ T cells in vitro was potently suppressed by both TLR agonists, with CL097 being stronger than CpG. The suppression was synergistically reversed by co-inhibition of cyclooxygenases 1 and 2, and inducible nitric oxide (NO) synthase. In addition, stimulation of OT-II CD4+ T cell/DC cultures with CL097 induced higher levels of CD4+ T cell death than stimulation with CpG, and this CD4+ T cell turnover was reversed by NO and PGE2 inhibition. Consistently, the co-cultures stimulated with CL097 produced higher levels of prostaglandin E2 (PGE2) and NO than stimulation with CpG. CL097 induced higher PGE2 production in DC cultures and higher IFN-gamma in the OT-II CD4+ T cell/DC cultures, accounting for the high levels of PGE2 and NO. This study demonstrates that the adjuvant activities of immunostimulatory molecules may be determined by differential induction of negative regulators, including NO and PGE2 suppressing clonal expansion and promoting cell death of CD4+ T cells.

Rights and Permissions

Citation: PLoS One. 2015 Apr 13;10(4):e0123165. doi: 10.1371/journal.pone.0123165. eCollection 2015.. Link to article on publisher's site

DOI of Published Version

10.1371/journal.pone.0123165

Comments

This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Related Resources

Link to Article in PubMed

Journal Title

PloS one

PubMed ID

25875128

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Included in

Immunity Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.