UMMS Affiliation

Department of Neurology

Date

8-12-2014

Document Type

Article

Disciplines

Neurology | Neuroscience and Neurobiology

Abstract

BACKGROUND: Histamine (HA) regulates the sleep-wake cycle, synaptic plasticity and memory in adult mammals. Dopaminergic specification in the embryonic ventral midbrain (VM) coincides with increased HA brain levels. To study the effect of HA receptor stimulation on dopamine neuron generation, we administered HA to dopamine progenitors, both in vitro and in vivo.

RESULTS: Cultured embryonic day 12 (E12) VM neural stem/progenitor cells expressed transcripts for HA receptors H1R, H2R and H3R. These undifferentiated progenitors increased intracellular calcium upon HA addition. In HA-treated cultures, dopamine neurons significantly decreased after activation of H1R. We performed intrauterine injections in the developing VM to investigate HA effects in vivo. HA administration to E12 rat embryos notably reduced VM Tyrosine Hydroxylase (TH) staining 2 days later, without affecting GABA neurons in the midbrain, or serotonin neurons in the mid-hindbrain boundary. qRT-PCR and Western blot analyses confirmed that several markers important for the generation and maintenance of dopaminergic lineage such as TH, Lmx1a and Lmx1b were significantly diminished. To identify the cell type susceptible to HA action, we injected embryos of different developmental stages, and found that neural progenitors (E10 and E12) were responsive, whereas differentiated dopaminergic neurons (E14 and E16) were not susceptible to HA actions. Proliferation was significantly diminished, whereas neuronal death was not increased in the VM after HA administration. We injected H1R or H2R antagonists to identify the receptor responsible for the detrimental effect of HA on dopaminergic lineage and found that activation of H1R was required.

CONCLUSION: These results reveal a novel action of HA affecting dopaminergic lineage during VM development.

Rights and Permissions

Citation: Mol Brain. 2014 Aug 12;7:58. doi: 10.1186/s13041-014-0058-x. Link to article on publisher's site

DOI of Published Version

10.1186/s13041-014-0058-x

Related Resources

Link to Article in PubMed

Journal Title

Molecular brain

PubMed ID

25112718

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.