UMMS Affiliation

Department of Medicine, Division of Infectious Diseases and Immunology; Program in Molecular Medicine

Date

1-2012

Document Type

Article

Subjects

Adiposity; Adrenal Glands; Animals; Antigens, CD14; Body Weight; Dietary Fats; Fasting; Fatty Acids; Glucose; Glucose Tolerance Test; *Homeostasis; Humans; Hypoglycemia; Insulin; Lipids; Lipopolysaccharides; Macrophages, Peritoneal; Mice; Mice, Inbred C57BL; Mice, Knockout; Signal Transduction

Disciplines

Biochemistry, Biophysics, and Structural Biology | Immunology and Infectious Disease | Life Sciences | Medicine and Health Sciences

Abstract

The toll-like receptors comprise one of the most conserved components of the innate immune system, signaling the presence of molecules of microbial origin. It has been proposed that signaling through TLR4, which requires CD14 to recognize bacterial lipopolysaccharide (LPS), may generate low-grade inflammation and thereby affect insulin sensitivity and glucose metabolism. To examine the long-term influence of partial innate immune signaling disruption on glucose homeostasis, we analyzed knockout mice deficient in CD14 backcrossed into the diabetes-prone C57BL6 background at 6 or 12 months of age. CD14-ko mice, fed either normal or high-fat diets, displayed significant glucose intolerance compared to wild type controls. They also displayed elevated norepinephrine urinary excretion and increased adrenal medullary volume, as well as an enhanced norepinephrine secretory response to insulin-induced hypoglycemia. These results point out a previously unappreciated crosstalk between innate immune- and sympathoadrenal- systems, which exerts a major long-term effect on glucose homeostasis.

Comments

Citation: Young JL, Mora A, Cerny A, Czech MP, Woda B, et al. (2012) CD14 Deficiency Impacts Glucose Homeostasis in Mice through Altered Adrenal Tone. PLoS ONE 7(1): e29688. doi:10.1371/journal.pone.0029688. Link to article on publisher's site

Copyright: © 2012 Young et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Related Resources

Link to Article in PubMed

PubMed ID

22253759

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.