UMMS Affiliation

Department of Cancer Biology; Department of Biochemistry and Molecular Pharmacology

Publication Date

7-5-2012

Document Type

Article

Subjects

Acetylation; Basic-Leucine Zipper Transcription Factors; DNA; DNA Damage; Fanconi Anemia Complementation Group Proteins; Lysine

Disciplines

Biochemistry, Biophysics, and Structural Biology | Cancer Biology | Genetics and Genomics | Life Sciences | Medicine and Health Sciences

Abstract

BRCA1 promotes DNA repair through interactions with multiple proteins, including CtIP and FANCJ (also known as BRIP1/BACH1). While CtIP facilitates DNA end resection when de-acetylated, the function of FANCJ in repair processing is less well defined. Here, we report that FANCJ is also acetylated. Preventing FANCJ acetylation at lysine 1249 does not interfere with the ability of cells to survive DNA interstrand crosslinks (ICLs). However, resistance is achieved with reduced reliance on recombination. Mechanistically, FANCJ acetylation facilitates DNA end processing required for repair and checkpoint signaling. This conclusion was based on the finding that FANCJ and its acetylation were required for robust RPA foci formation, RPA phosphorylation, and Rad51 foci formation in response to camptothecin (CPT). Furthermore, both preventing and mimicking FANCJ acetylation at lysine 1249 disrupts FANCJ function in checkpoint maintenance. Thus, we propose that the dynamic regulation of FANCJ acetylation is critical for robust DNA damage response, recombination-based processing, and ultimately checkpoint maintenance.

Comments

Citation: Xie J, Peng M, Guillemette S, Quan S, Maniatis S, et al. (2012) FANCJ/BACH1 Acetylation at Lysine 1249 Regulates the DNA Damage Response. PLoS Genet 8(7): e1002786. doi:10.1371/journal.pgen.1002786. Link to article on publisher's site

Copyright: © 2012 Cantor et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Related Resources

Link to Article in PubMed

Journal/Book/Conference Title

PLoS genetics

PubMed ID

22792074

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.