UMMS Affiliation

Department of Biochemistry and Molecular Pharmacology

Publication Date

6-14-2012

Document Type

Article

Subjects

DNA-Binding Proteins; TDP-43 Proteinopathies; Neurodegenerative Diseases

Disciplines

Life Sciences | Medicine and Health Sciences | Neuroscience and Neurobiology

Abstract

In 2006, TAR-DNA binding protein 43 kDa (TDP-43) was discovered to be in the intracellular aggregates in the degenerating cells in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), two fatal neurodegenerative diseases [1,2]. ALS causes motor neuron degeneration leading to paralysis [3,4]. FTLD causes neuronal degeneration in the frontal and temporal cortices leading to personality changes and a loss of executive function [5]. The discovery triggered a flurry of research activity that led to the discovery of TDP-43 mutations in ALS patients and the widespread presence of TDP-43 aggregates in numerous neurodegenerative diseases. A key question regarding the role of TDP-43 is whether it causes neurotoxicity by a gain of function or a loss of function. The gain-of-function hypothesis has received much attention primarily based on the striking neurodegenerative phenotypes in numerous TDP-43-overexpression models. In this review, I will draw attention to the loss-of-function hypothesis, which postulates that mutant TDP-43 causes neurodegeneration by a loss of function, and in addition, by exerting a dominant-negative effect on the wild-type TDP-43 allele. Furthermore, I will discuss how a loss of function can cause neurodegeneration in patients where TDP-43 is not mutated, review the literature in model systems to discuss how the current data support the loss-of-function mechanism and highlight some key questions for testing this hypothesis in the future.

Comments

Citation: Mol Neurodegener. 2012 Jun 14;7:27. Link to article on publisher's site

© 2012 Xu

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Related Resources

Link to Article in PubMed

Journal/Book/Conference Title

Molecular neurodegeneration

PubMed ID

22697423

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.