UMMS Affiliation

Program in Gene Function and Expression; Program in Molecular Medicine

Date

11-1-2011

Document Type

Article

Subjects

Peroxisome Proliferator-Activated Receptors; Muscle, Skeletal

Disciplines

Cell and Developmental Biology | Life Sciences | Medicine and Health Sciences | Physiology

Abstract

Peroxisome proliferator-activated receptors (PPARs) are a class of nuclear receptors that play important roles in development and energy metabolism. Whereas PPARdelta has been shown to regulate mitochondrial biosynthesis and slow-muscle fiber types, its function in skeletal muscle progenitors (satellite cells) is unknown. Since constitutive mutation of Ppardelta leads to embryonic lethality, we sought to address this question by conditional knockout (cKO) of Ppardelta using Myf5-Cre/Ppardeltaflox/flox alleles to ablate PPARdelta in myogenic progenitor cells. Although Ppardelta-cKO mice were born normally and initially displayed no difference in body weight, muscle size or muscle composition, they later developed metabolic syndrome, which manifested as increased body weight and reduced response to glucose challenge at age nine months. Ppardelta-cKO mice had 40% fewer satellite cells than their wild-type littermates, and these satellite cells exhibited reduced growth kinetics and proliferation in vitro. Furthermore, regeneration of Ppardelta-cKO muscles was impaired after cardiotoxin-induced injury. Gene expression analysis showed reduced expression of the Forkhead box class O transcription factor 1 (FoxO1) gene in Ppardelta-cKO muscles under both quiescent and regenerating conditions, suggesting that PPARdelta acts through FoxO1 in regulating muscle progenitor cells. These results support a function of PPARdelta in regulating skeletal muscle metabolism and insulin sensitivity, and they establish a novel role of PPARdelta in muscle progenitor cells and postnatal muscle regeneration.

Comments

Citation: Skelet Muscle. 2011 Nov 1;1(1):33. Link to article on publisher's site

© 2011 Angione et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Related Resources

Link to Article in PubMed

Journal Title

Skeletal muscle

PubMed ID

22040534

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.