UMMS Affiliation

Department of Biochemistry and Molecular Pharmacology

Publication Date

2-13-2009

Document Type

Article

Subjects

Algorithms; Animals; Markov Chains; Models, Molecular; Multiprotein Complexes; *Protein Structure, Secondary; Protein Subunits; Recombinant Proteins; Saccharomyces cerevisiae Proteins; Vesicular Transport Proteins

Disciplines

Biochemistry, Biophysics, and Structural Biology | Life Sciences | Medicine and Health Sciences

Abstract

BACKGROUND: The exocyst is a large hetero-octomeric protein complex required for regulating the targeting and fusion of secretory vesicles to the plasma membrane in eukaryotic cells. Although the sequence identity between the eight different exocyst subunits is less than 10%, structures of domains of four of the subunits revealed a similar helical bundle topology. Characterization of several of these subunits has been hindered by lack of soluble protein for biochemical and structural studies.

METHODOLOGY/PRINCIPAL FINDINGS: Using advanced hidden Markov models combined with secondary structure predictions, we detect significant sequence similarity between each of the exocyst subunits, indicating that they all contain helical bundle structures. We corroborate these remote homology predictions by identifying and purifying a predicted domain of yeast Sec10p, a previously insoluble exocyst subunit. This domain is soluble and folded with approximately 60% alpha-helicity, in agreement with our predictions, and capable of interacting with several known Sec10p binding partners.

CONCLUSIONS/SIGNIFICANCE: Although all eight of the exocyst subunits had been suggested to be composed of similar helical bundles, this has now been validated by our hidden Markov model structure predictions. In addition, these predictions identified protein domains within the exocyst subunits, resulting in creation and characterization of a soluble, folded domain of Sec10p.

Comments

Citation: Croteau NJ, Furgason MLM, Devos D, Munson M (2009) Conservation of Helical Bundle Structure between the Exocyst Subunits. PLoS ONE 4(2): e4443. doi:10.1371/journal.pone.0004443. Link to article on publisher's site

Copyright: © 2009 Croteau et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Related Resources

Link to Article in PubMed

Journal/Book/Conference Title

PloS one

PubMed ID

19214222

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.