PubMed ID

20027309

UMMS Affiliation

Department of Neurobiology

Date

12-23-2009

Document Type

Article

Subjects

Aging; Animals; Axons; Biological Markers; Drosophila Proteins; Drosophila melanogaster; Gene Knockdown Techniques; Gene Silencing; MicroRNAs; Morphogenesis; Mushroom Bodies; Phenotype; Receptors, Cytoplasmic and Nuclear

Disciplines

Life Sciences | Medicine and Health Sciences | Neuroscience and Neurobiology

Abstract

Nuclear receptors (NRs) comprise a family of ligand-regulated transcription factors that control diverse critical biological processes including various aspects of brain development. Eighteen NR genes exist in the Drosophila genome. To explore their roles in brain development, we knocked down individual NRs through the development of the mushroom bodies (MBs) by targeted RNAi. Besides recapitulating the known MB phenotypes for three NRs, we found that unfulfilled (unf), an ortholog of human photoreceptor specific nuclear receptor (PNR), regulates axonal morphogenesis and neuronal subtype identity. The adult MBs develop through remodeling of gamma neurons plus de-novo elaboration of both alpha'/beta' and alpha/beta neurons. Notably, unf is largely dispensable for the initial elaboration of gamma neurons, but plays an essential role in their re-extension of axons after pruning during early metamorphosis. The subsequently derived MB neuron types also require unf for extension of axons beyond the terminus of the pruned bundle. Tracing single axons revealed misrouting rather than simple truncation. Further, silencing unf in single-cell clones elicited misguidance of axons in otherwise unperturbed MBs. Such axon guidance defects may occur as MB neurons partially lose their subtype identity, as evidenced by suppression of various MB subtype markers in unf knockdown MBs. In sum, unf governs axonal morphogenesis of multiple MB neuron types, possibly through regulating neuronal subtype identity.

Rights and Permissions

Citation: Lin S, Huang Y, Lee T (2009) Nuclear Receptor Unfulfilled Regulates Axonal Guidance and Cell Identity of Drosophila Mushroom Body Neurons. PLoS ONE 4(12): e8392. doi:10.1371/journal.pone.0008392. Link to article on publisher's site

Comments

Co-author Suewei Lin is a student in the Neuroscience program in the Graduate School of Biomedical Sciences (GSBS) at UMass Medical School.

Related Resources

Link to Article in PubMed

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.