UMMS Affiliation

Department of Neurology

Date

3-5-2008

Document Type

Article

Subjects

Aging; Animals; Disease Progression; Electrophysiology; Gene Expression Regulation; Humans; Mice; Mice, Transgenic; Muscle, Skeletal; Mutation; Myotonia; Oxidation-Reduction; Paralysis, Hyperkalemic Periodic; Phenotype; Potassium; RNA, Messenger; Sensitivity and Specificity; Sodium Channels

Disciplines

Life Sciences | Medicine and Health Sciences

Abstract

Hyperkalemic periodic paralysis (HyperKPP) produces myotonia and attacks of muscle weakness triggered by rest after exercise or by K+ ingestion. We introduced a missense substitution corresponding to a human familial HyperKPP mutation (Met1592Val) into the mouse gene encoding the skeletal muscle voltage-gated Na+ channel NaV1.4. Mice heterozygous for this mutation exhibited prominent myotonia at rest and muscle fiber-type switching to a more oxidative phenotype compared with controls. Isolated mutant extensor digitorum longus muscles were abnormally sensitive to the Na+/K+ pump inhibitor ouabain and exhibited age-dependent changes, including delayed relaxation and altered generation of tetanic force. Moreover, rapid and sustained weakness of isolated mutant muscles was induced when the extracellular K+ concentration was increased from 4 mM to 10 mM, a level observed in the muscle interstitium of humans during exercise. Mutant muscle recovered from stimulation-induced fatigue more slowly than did control muscle, and the extent of recovery was decreased in the presence of high extracellular K+ levels. These findings demonstrate that expression of the Met1592ValNa+ channel in mouse muscle is sufficient to produce important features of HyperKPP, including myotonia, K+-sensitive paralysis, and susceptibility to delayed weakness during recovery from fatigue.

Rights and Permissions

Citation: J Clin Invest. 2008 Apr;118(4):1437-49. Link to article on publisher's site

DOI of Published Version

10.1172/JCI32638

Related Resources

Link to Article in PubMed

Journal Title

The Journal of clinical investigation

PubMed ID

18317596

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.