Visualization of Ca2+ entry through single stretch-activated cation channels

UMMS Affiliation

Department of Physiology and Biomedical Imaging Group



Document Type



Animals; Bufo marinus; Calcium; Calcium Channels; Cations; Electrophysiology; Muscle, Smooth; Patch-Clamp Techniques; Spectrometry, Fluorescence; Time Factors


Life Sciences | Medicine and Health Sciences


Stretch-activated channels (SACs) have been found in smooth muscle and are thought to be involved in myogenic responses. Although SACs have been shown to be Ca(2+) permeable when Ca(2+) is the only charge carrier, it has not been clearly demonstrated that significant Ca(2+) passes through SACs in physiological solutions. By imaging at high temporal and spatial resolution the single-channel Ca(2+) fluorescence transient (SCCaFT) arising from Ca(2+) entry through a single SAC opening, we provide direct evidence that significant Ca(2+) can indeed pass through SACs and increase the local [Ca(2+)]. Results were obtained under conditions where the only source of Ca(2+) was the physiological salt solution in the patch pipette containing 2 mM Ca(2+). Single smooth muscle cells were loaded with fluo-3 acetoxymethyl ester, and the fluorescence was recorded by using a wide-field digital imaging microscope while SAC currents were simultaneously recorded from cell-attached patches. Fluorescence increases at the cell-attached patch were clearly visualized before the simultaneous global Ca(2+) increase that occurred because of Ca(2+) influx through voltage-gated Ca(2+) channels when the membrane was depolarized by inward SAC current. From measurements of total fluorescence ("signal mass") we determined that about 18% of the SAC current is carried by Ca(2+) at membrane potentials more negative than the resting level. This would translate into at least a 0.35-pA unitary Ca(2+) current at the resting potential. Such Ca(2+) currents passing through SACs are sufficient to activate large-conductance Ca(2+)-activated K(+) channels and, as shown previously, to trigger Ca(2+) release from intracellular stores.

Rights and Permissions

Citation: Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6404-9. Link to article on publisher's site

DOI of Published Version


Related Resources

Link to Article in PubMed

Journal Title

Proceedings of the National Academy of Sciences of the United States of America

PubMed ID