UMMS Affiliation

Worcester Foundation for Biomedical Research; Department of Biochemistry and Molecular Pharmacology

Date

8-15-1998

Document Type

Article

Subjects

Cell Nucleolus; RNA; RNA, Messenger; RNA, Ribosomal; RNA, Small Nuclear; RNA, Transfer; Signal Recognition Particle; Telomerase

Disciplines

Life Sciences | Medicine and Health Sciences

Abstract

The nucleolus of eukaryotic cells was first described in the early 19th century and was discovered in the 1960s to be the seat of ribosome synthesis. Although rRNA transcription, rRNA processing and ribosome assembly have been clearly established as major functions of the nucleolus, recent studies suggest that the nucleolus participates in many other aspects of gene expression as well. Thus, the nucleolus has been implicated in the processing or nuclear export of certain mRNAs. In addition, new results indicate that biosyntheses of signal recognition particle RNA and telomerase RNA involve a nucleolar stage and that the nucleolus is also involved in processing of U6 RNA, one of the spliceosomal small nuclear RNAs. Interestingly, these three nucleolus-associated small nuclear RNAs (signal recognition particle RNA, telomerase RNA and U6 RNA) are components of catalytic ribonucleoprotein machines. Finally, recent work has also suggested that some transfer RNA precursors are processed in the nucleolus. The nucleolus may have evolutionarily descended from a proto-eukaryotic minimal genome that was spatially linked to vicinal RNA processing and ribonucleoprotein assembly events involved in gene read-out. The nucleolus of today's eukaryotes, now surrounded by the chromatin of over 2 billion years of genome expansion, may still perform these ancient functions, in addition to ribosome biosynthesis. The plurifunctional nucleolus concept has a strong footing in contemporary data and adds a new perspective to our current picture of the spatial-functional design of the cell nucleus.

Rights and Permissions

Citation: Nucleic Acids Res. 1998 Sep 1;26(17):3871-6.

Related Resources

Link to Article in PubMed

Journal Title

Nucleic acids research

PubMed ID

9705492

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.