UMMS Affiliation

Department of Physiology

Date

4-10-1999

Document Type

Article

Subjects

3T3 Cells; Acrylic Resins; Actins; Animals; Cell Movement; Cell Size; Collagen; Cytochalasin D; Cytoskeleton; Elasticity; Fluorescent Dyes; Mice; Myosins; Nocodazole; Stress, Mechanical; Time Factors; Vinculin

Disciplines

Life Sciences | Medicine and Health Sciences

Abstract

We have developed a new approach to detect mechanical forces exerted by locomoting fibroblasts on the substrate. Cells were cultured on elastic, collagen-coated polyacrylamide sheets embedded with 0. 2-micrometer fluorescent beads. Forces exerted by the cell cause deformation of the substrate and displacement of the beads. By recording the position of beads during cell locomotion and after cell removal, we discovered that most forces were radially distributed, switching direction in the anterior region. Deformations near the leading edge were strong, transient, and variable in magnitude, consistent with active local contractions, whereas those in the posterior region were weaker, more stable, and more uniform, consistent with passive resistance. Treatment of cells with cytochalasin D or myosin II inhibitors caused relaxation of the forces, suggesting that they are generated primarily via actin-myosin II interactions; treatment with nocodazole caused no immediate effect on forces. Immunofluorescence indicated that the frontal region of strong deformation contained many vinculin plaques but no apparent concentration of actin or myosin II filaments. Strong mechanical forces in the anterior region, generated by locally activated myosin II and transmitted through vinculin-rich structures, likely play a major role in cell locomotion and in mechanical signaling with the surrounding environment.

Rights and Permissions

Citation: Mol Biol Cell. 1999 Apr;10(4):935-45.

Related Resources

Link to Article in PubMed

Journal Title

Molecular biology of the cell

PubMed ID

10198048

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.