UMMS Affiliation

Department of Medicine, Division of Infectious Diseases and Immunology



Document Type



Antibodies, Monoclonal; Antibody Formation; Cell Communication; Dactinomycin; Dengue; Dengue Virus; Formaldehyde; Glutaral; Humans; Interferon Type I; Lymphocytes; Monocytes; Polymers


Immunology and Infectious Disease


Human monocytes actively replicate dengue virus. To dissect the primary immune responses to dengue virus-infected monocytes (DV-monocytes), we analyzed the interaction between autologous DV-monocytes and the peripheral blood lymphocytes (PBL) of dengue nonimmune donors. Interferon (IFN) activity was detected when PBL were cultured with DV-monocytes. Cell contact between PBL and DV-monocytes was required for IFN production; however, MHC compatibility between PBL and monocytes was not necessary. DV-monocytes fixed with paraformaldehyde or glutaraldehyde, which produced no infectious virus, also induced high levels of IFN from PBL. The ability of DV-monocytes to induce IFN correlated with the appearance of dengue antigens. The PBL that produce IFN were characterized by FACS sorting using monoclonal and polyclonal antibodies. HLA-DR+ and T3- cells produced high titers of IFN, while HLA-DR- and T3+ cells produced very low or undetectable levels of IFN. Moderate titers of IFN were produced by cells contained in B cell fractions (surface immunoglobulin-positive, B1+, and Leu-12+), and cells contained in natural killer cell fractions (Leu-11+ and OKM1+). Therefore, IFN-producing cells are heterogeneous, and the predominant producer cells are characterized as HLA-DR+ and non-T lymphocytes. The IFN produced was characterized by RIA using mAbs to IFN-alpha and IFN-gamma. The IFN-alpha was the predominant IFN produced; in addition, a low level of IFN-gamma was also detected in some experiments. The culture fluids obtained from PBL exposed to autologous DV-monocytes, which contained high IFN activity, completely inhibited dengue virus infection of monocytes. These results suggest that IFN-alpha produced by PBL exposed to DV-monocytes may play an important role in controlling primary dengue virus infection.

Rights and Permissions

Citation: J Exp Med. 1987 Oct 1;166(4):999-1010.

Related Resources

Link to Article in PubMed

PubMed ID




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.