UMMS Affiliation

Department of Neurobiology; Freeman Lab; Graduate School of Biomedical Sciences, MD, PhD Program

Date

8-30-2012

Document Type

Article

Medical Subject Headings

Aldehyde Dehydrogenase; Animals; Axons; *Brain Injuries; Calcium-Binding Protein, Vitamin D-Dependent; *Drosophila; Drosophila Proteins; HSP40 Heat-Shock Proteins; Huntington Disease; Mice; Molecular Chaperones; Mutation; *Nerve Degeneration; Proteomics; Spinocerebellar Ataxias; *Synapses; Thiolester Hydrolases; Wallerian Degeneration; rho-Associated Kinases

Disciplines

Biochemistry, Biophysics, and Structural Biology | Genetics and Genomics | Neuroscience and Neurobiology

Abstract

Degeneration of synaptic and axonal compartments of neurons is an early event contributing to the pathogenesis of many neurodegenerative diseases, but the underlying molecular mechanisms remain unclear. Here, we demonstrate the effectiveness of a novel "top-down" approach for identifying proteins and functional pathways regulating neurodegeneration in distal compartments of neurons. A series of comparative quantitative proteomic screens on synapse-enriched fractions isolated from the mouse brain following injury identified dynamic perturbations occurring within the proteome during both initiation and onset phases of degeneration. In silico analyses highlighted significant clustering of proteins contributing to functional pathways regulating synaptic transmission and neurite development. Molecular markers of degeneration were conserved in injury and disease, with comparable responses observed in synapse-enriched fractions isolated from mouse models of Huntington's disease (HD) and spinocerebellar ataxia type 5. An initial screen targeting thirteen degeneration-associated proteins using mutant Drosophila lines revealed six potential regulators of synaptic and axonal degeneration in vivo. Mutations in CALB2, ROCK2, DNAJC5/CSP, and HIBCH partially delayed injury-induced neurodegeneration. Conversely, mutations in DNAJC6 and ALDHA1 led to spontaneous degeneration of distal axons and synapses. A more detailed genetic analysis of DNAJC5/CSP mutants confirmed that loss of DNAJC5/CSP was neuroprotective, robustly delaying degeneration in axonal and synaptic compartments. Our study has identified conserved molecular responses occurring within synapse-enriched fractions of the mouse brain during the early stages of neurodegeneration, focused on functional networks modulating synaptic transmission and incorporating molecular chaperones, cytoskeletal modifiers, and calcium-binding proteins. We propose that the proteins and functional pathways identified in the current study represent attractive targets for developing therapeutics aimed at modulating synaptic and axonal stability and neurodegeneration in vivo.

Comments

Citation: PLoS Genet. 2012;8(8):e1002936. doi: 10.1371/journal.pgen.1002936. Link to article on publisher's site

Copyright 2012 Wishart et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Co-author Timothy Rooney is a student in the MD/PhD program in the Graduate School of Biomedical Sciences (GSBS) at UMass Medical School.

Related Resources

Link to Article in PubMed

PubMed ID

22952455

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.