UMMS Affiliation

Department of Medicine, Division of Cardiovascular Medicine; UMass Metabolic Network

Date

8-1-2017

Document Type

Article

Disciplines

Biochemistry | Cell Biology | Cellular and Molecular Physiology | Molecular Biology

Abstract

MicroRNAs (miRNAs) regulate gene expression with emerging data suggesting miRNAs play a role in skeletal muscle biology. We sought to examine the association of miRNAs with grip strength in a community-based sample. Framingham Heart Study Offspring and Generation 3 participants (n = 5668 54% women, mean age 55 years, range 24, 90 years) underwent grip strength measurement and miRNA profiling using whole blood from fasting morning samples. Linear mixed-effects regression modeling of grip strength (kg) versus continuous miRNA 'Cq' values and versus binary miRNA expression was performed. We conducted an integrative miRNA-mRNA coexpression analysis and examined the enrichment of biologic pathways for the top miRNAs associated with grip strength. Grip strength was lower in women than in men and declined with age with a mean 44.7 (10.0) kg in men and 26.5 (6.3) kg in women. Among 299 miRNAs interrogated for association with grip strength, 93 (31%) had FDR q value < 0.05, 54 (18%) had an FDR q value < 0.01, and 15 (5%) had FDR q value < 0.001. For almost all miRNA-grip strength associations, increasing miRNA concentration is associated with increasing grip strength. miR-20a-5p (FDR q 1.8 x 10-6 ) had the most significant association and several among the top 15 miRNAs had links to skeletal muscle including miR-126-3p, miR-30a-5p, and miR-30d-5p. The top associated biologic pathways included metabolism, chemokine signaling, and ubiquitin-mediated proteolysis. Our comprehensive assessment in a community-based sample of miRNAs in blood associated with grip strength provides a framework to further our understanding of the biology of muscle strength.

Rights and Permissions

Copyright 2017 The Authors. Citation: Aging Cell. 2017 Aug;16(4):888-894. doi: 10.1111/acel.12622. Epub 2017 Jun 8. Link to article on publisher's site

Related Resources

Link to Article in PubMed

Keywords

mRNA, aging, epidemiology, grip strength, microRNA

PubMed ID

28597569

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.