Title

Innate immune recognition of an AT-rich stem-loop DNA motif in the Plasmodium falciparum genome

UMMS Affiliation

Department of Medicine, Division of Infectious Diseases and Immunology

Date

8-26-2011

Document Type

Article

Subjects

AT Rich Sequence; Animals; DNA, Protozoan; Gene Expression Profiling; Humans; Immunity, Innate; Interferon Regulatory Factor-3; Interferon Regulatory Factor-7; Interferon Type I; Malaria, Falciparum; Membrane Proteins; Mice; Mice, Knockout; Oligonucleotides; Plasmodium falciparum; Protein-Serine-Threonine Kinases; Receptor, Interferon alpha-beta; Signal Transduction

Abstract

Although Toll-like receptor 9 (TLR9) has been implicated in cytokine and type I interferon (IFN) production during malaria in humans and mice, the high AT content of the Plasmodium falciparum genome prompted us to examine the possibility that malarial DNA triggered TLR9-independent pathways. Over 6000 ATTTTTAC ("AT-rich") motifs are present in the genome of P. falciparum, which we show here potently induce type I IFNs. Parasite DNA, parasitized erythrocytes and oligonucleotides containing the AT-rich motif induce type I IFNs via a pathway that did not involve the previously described sensors TLR9, DAI, RNA polymerase-III or IFI16/p204. Rather, AT-rich DNA sensing involved an unknown receptor that coupled to the STING, TBK1 and IRF3-IRF7 signaling pathway. Mice lacking IRF3, IRF7, the kinase TBK1 or the type I IFN receptor were resistant to otherwise lethal cerebral malaria. Collectively, these observations implicate AT-rich DNA sensing via STING, TBK1 and IRF3-IRF7 in P. falciparum malaria.

Comments

Citation: Immunity. 2011 Aug 26;35(2):194-207. Epub 2011 Aug 4. Link to article on publisher's site

Related Resources

Link to Article in PubMed

PubMed ID

21820332