UMMS Affiliation

Department of Cell Biology

Date

5-21-2008

Document Type

Article

Medical Subject Headings

Animals; Binding Sites; *Computational Biology; Gene Regulatory Networks; Humans; Mice; *Muscle Development; Muscle Proteins; Mutagenesis, Site-Directed; MyoD Protein; NIH 3T3 Cells; *Promoter Regions, Genetic

Disciplines

Cell Biology

Abstract

BACKGROUND: Myocyte stress 1 (MS1) is a striated muscle actin binding protein required for the muscle specific activity of the evolutionary ancient myocardin related transcription factor (MRTF)/serum response factor (SRF) transcriptional pathway. To date, little is known about the molecular mechanisms that govern skeletal muscle specific expression of MS1. Such mechanisms are likely to play a major role in modulating SRF activity and therefore muscle determination, differentiation and regeneration. In this study we employed a comparative in silico analysis coupled with an experimental promoter characterisation to delineate these mechanisms.

RESULTS: Analysis of MS1 expression in differentiating C2C12 muscle cells demonstrated a temporal differentiation dependent up-regulation in ms1 mRNA. An in silico comparative sequence analysis identified two conserved putative myogenic regulatory domains within the proximal 1.5 kbp of 5' upstream sequence. Co-transfecting C2C12 myoblasts with ms1 promoter/luciferase reporters and myogenic regulatory factor (MRF) over-expression plasmids revealed specific sensitivity of the ms1 promoter to MyoD. Subsequent mutagenesis and EMSA analysis demonstrated specific targeting of MyoD at two distinct E-Boxes (E1 and E2) within identified evolutionary conserved regions (ECRs, alpha and beta). Chromatin immunoprecipitation (ChIP) analysis indicates that co-ordinated binding of MyoD at E-Boxes located within ECRs alpha and beta correlates with the temporal induction in ms1 mRNA.

CONCLUSION: These findings suggest that the tissue specific and differentiation dependent up-regulation in ms1 mRNA is mediated by temporal binding of MyoD at distinct evolutionary conserved E-Boxes within the ms1 5' upstream sequence. We believe, through its activation of ms1, this is the first study to demonstrate a direct link between MyoD activity and SRF transcriptional signalling, with clear implications for the understanding of muscle determination, differentiation and regeneration.

Rights and Permissions

Citation: BMC Mol Biol. 2008 May 19;9:50. doi:10.1186/1471-2199-9-50. © 2008 Ounzain et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Link to article on publisher's site

Related Resources

Link to Article in PubMed

Included in

Cell Biology Commons

Share

COinS