GSBS Student Publications

Title

Both membrane stretch and fatty acids directly activate large conductance Ca(2+)-activated K+ channels in vascular smooth muscle cells

GSBS Program

Biochemistry & Molecular Pharmacology

UMMS Affiliation

Graduate School of Biomedical Sciences; Department of Physiology

Date

2-13-1992

Document Type

Article

Medical Subject Headings

Animals; Arachidonic Acid; Calcium; Cations; Cell Membrane; Fatty Acids; Membrane Potentials; Muscle, Smooth, Vascular; Myristic Acid; Myristic Acids; Potassium Channels; Pulmonary Artery; Rabbits

Disciplines

Life Sciences | Medicine and Health Sciences

Abstract

Large conductance Ca(2+)-activated K+ channels in rabbit pulmonary artery smooth muscle cells are activated by membrane stretch and by arachidonic acid and other fatty acids. Activation by stretch appears to occur by a direct effect of stretch on the channel itself or a closely associated component. In excised inside-out patches stretch activation was seen under conditions which precluded possible mechanisms involving cytosolic factors, release of Ca2+ from intracellular stores, or stretch induced transmembrane flux of Ca2+ or other ions potentially capable of activating the channel. Fatty acids also directly activate this channel. Like stretch activation, fatty acid activation occurs in excised inside-out patches in the absence of cytosolic constituents. Moreover, the channel is activated by fatty acids which, unlike arachidonic acid, are not substrates for the cyclo-oxygenase or lypoxygenase pathways, indicating that oxygenated metabolites do not mediate the response. Thus, four distinct types of stimuli (cytosolic Ca2+, membrane potential, membrane stretch, and fatty acids) can directly affect the activity of this channel.

Rights and Permissions

Citation: FEBS Lett. 1992 Feb 3;297(1-2):24-8.

Related Resources

Link to article in PubMed

Journal Title

FEBS letters

PubMed ID

1551431