GSBS Student Publications

Student Author(s)

Caroline S. Dacwag

GSBS Program

Cellular & Molecular Physiology

UMMS Affiliation

Department of Cell Biology



Document Type


Medical Subject Headings

Acetylation; Animals; Cell Cycle Proteins; *Cell Differentiation; Cell Line; Chromatin; *Chromatin Assembly and Disassembly; Chromatin Immunoprecipitation; Cyclin-Dependent Kinase Inhibitor p21; DNA; DNA Helicases; DNA-Binding Proteins; Histones; Homeodomain Proteins; Humans; Kinetics; Mice; Models, Genetic; Multiprotein Complexes; Muscles; MyoD Protein; Myogenic Regulatory Factors; Myogenin; Nerve Tissue Proteins; Nuclear Proteins; Oligonucleotide Array Sequence Analysis; Promoter Regions (Genetics); Ribonucleoproteins; Transcription Factors


Cell Biology | Life Sciences | Medicine and Health Sciences


The activation of muscle-specific gene expression requires the coordinated action of muscle regulatory proteins and chromatin-remodeling enzymes. Microarray analysis performed in the presence or absence of a dominant-negative BRG1 ATPase demonstrated that approximately one-third of MyoD-induced genes were highly dependent on SWI/SNF enzymes. To understand the mechanism of activation, we performed chromatin immunoprecipitations analyzing the myogenin promoter. We found that H4 hyperacetylation preceded Brg1 binding in a MyoD-dependent manner but that MyoD binding occurred subsequent to H4 modification and Brg1 interaction. In the absence of functional SWI/SNF enzymes, muscle regulatory proteins did not bind to the myogenin promoter, thereby providing evidence for SWI/SNF-dependent activator binding. We observed that the homeodomain factor Pbx1, which cooperates with MyoD to stimulate myogenin expression, is constitutively bound to the myogenin promoter in a SWI/SNF-independent manner, suggesting a two-step mechanism in which MyoD initially interacts indirectly with the myogenin promoter and attracts chromatin-remodeling enzymes, which then facilitate direct binding by MyoD and other regulatory proteins.

Rights and Permissions

Citation: Mol Cell Biol. 2005 May;25(10):3997-4009. Link to article on publisher's site

Related Resources

Link to article in PubMed

PubMed ID




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.