GSBS Student Publications

Student Author(s)

Cristina M. Velazquez-Marrero

GSBS Program

Neuroscience

UMMS Affiliation

Department of Microbiology and Physiological Systems; Program in Neuroscience

Date

3-7-2014

Document Type

Article

Medical Subject Headings

Analgesics, Opioid; Animals; Calcium; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Male; Pituitary Gland, Posterior; Presynaptic Terminals; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Ryanodine

Disciplines

Molecular and Cellular Neuroscience | Neuroscience and Neurobiology

Abstract

mu-Opioid agonists have no effect on calcium currents (I(Ca)) in neurohypophysial terminals when recorded using the classic whole-cell patch-clamp configuration. However, mu-opioid receptor (MOR)-mediated inhibition of I(Ca) is reliably demonstrated using the perforated-patch configuration. This suggests that the MOR-signaling pathway is sensitive to intraterminal dialysis and is therefore mediated by a readily diffusible second messenger. Using the perforated patch-clamp technique and ratio-calcium-imaging methods, we describe a diffusible second messenger pathway stimulated by the MOR that inhibits voltage-gated calcium channels in isolated terminals from the rat neurohypophysis (NH). Our results show a rise in basal intracellular calcium ([Ca(2+)]i) in response to application of [D-Ala(2)-N-Me-Phe(4),Gly5-ol]-Enkephalin (DAMGO), a MOR agonist, that is blocked by D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a MOR antagonist. Buffering DAMGO-induced changes in [Ca(2+)]i with BAPTA-AM completely blocked the inhibition of both I(Ca) and high-K(+)-induced rises in [Ca(2+)]i due to MOR activation, but had no effect on kappa-opioid receptor (KOR)-mediated inhibition. Given the presence of ryanodine-sensitive stores in isolated terminals, we tested 8-bromo-cyclic adenosine diphosphate ribose (8Br-cADPr), a competitive inhibitor of cyclic ADP-ribose (cADPr) signaling that partially relieves DAMGO inhibition of I(Ca) and completely relieves MOR-mediated inhibition of high-K(+)-induced and DAMGO-induced rises in [Ca(2+)]i. Furthermore, antagonist concentrations of ryanodine completely blocked MOR-induced increases in [Ca(2+)]i and inhibition of I(Ca) and high-K(+)-induced rises in [Ca(2+)]i while not affecting KOR-mediated inhibition. Antagonist concentrations of ryanodine also blocked MOR-mediated inhibition of electrically-evoked increases in capacitance. These results strongly suggest that a key diffusible second messenger mediating the MOR-signaling pathway in NH terminals is [Ca(2+)]i released by cADPr from ryanodine-sensitive stores.

Rights and Permissions

Citation: J Neurosci. 2014 Mar 5;34(10):3733-42. doi: 10.1523/JNEUROSCI.2505-13.2014. Link to article on publisher's site

DOI of Published Version

10.1523/JNEUROSCI.2505-13.2014

Comments

Copyright © 2014 the authors. Publisher PDF posted as allowed by the publisher's author rights policy at http://www.jneurosci.org/site/misc/ifa_policies.xhtml#copyright: Copyright of all material published in The Journal of Neuroscience remains with the authors. The authors grant the Society for Neuroscience an exclusive license to publish their work for the first 6 months. After 6 months the work becomes available to the public to copy, distribute, or display under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. The corresponding author may sign the license agreement on behalf of all authors, except authors who are NIH employees. Each author employed by NIH will have to complete and sign an NIH Publishing Agreement and attach it to an unsigned Journal of Neuroscience License to Publish form.

Related Resources

Link to Article in PubMed

Journal Title

The Journal of neuroscience : the official journal of the Society for Neuroscience

PubMed ID

24599471

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.