GSBS Student Publications

Student Author(s)

John A. Follit; Tingting Huang

GSBS Program

Interdisciplinary Graduate Program

UMMS Affiliation

Program in Molecular Medicine; Department of Microbiology and Physiological Systems; Department of Cell and Developmental Biology

Date

2-20-2014

Document Type

Article

Disciplines

Cell Biology | Developmental Biology | Molecular Genetics

Abstract

The primary cilium is a sensory organelle, defects in which cause a wide range of human diseases including retinal degeneration, polycystic kidney disease and birth defects. The sensory functions of cilia require specific receptors to be targeted to the ciliary subdomain of the plasma membrane. Arf4 has been proposed to sort cargo destined for the cilium at the Golgi complex and deemed a key regulator of ciliary protein trafficking. In this work, we show that Arf4 binds to the ciliary targeting sequence (CTS) of fibrocystin. Knockdown of Arf4 indicates that it is not absolutely required for trafficking of the fibrocystin CTS to cilia as steady-state CTS levels are unaffected. However, we did observe a delay in delivery of newly synthesized CTS from the Golgi complex to the cilium when Arf4 was reduced. Arf4 mutant mice are embryonic lethal and die at mid-gestation shortly after node formation. Nodal cilia appeared normal and functioned properly to break left-right symmetry in Arf4 mutant embryos. At this stage of development Arf4 expression is highest in the visceral endoderm but we did not detect cilia on these cells. In the visceral endoderm, the lack of Arf4 caused defects in cell structure and apical protein localization. This work suggests that while Arf4 is not required for ciliary assembly, it is important for the efficient transport of fibrocystin to cilia, and also plays critical roles in non-ciliary processes.

Rights and Permissions

Citation: Follit JA, San Agustin JT, Jonassen JA, Huang T, Rivera-Perez JA, et al. (2014) Arf4 Is Required for Mammalian Development but Dispensable for Ciliary Assembly. PLoS Genet 10(2): e1004170. doi:10.1371/journal.pgen.1004170. Link to article on publisher's website

Comments

Copyright 2014 Follit et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Related Resources

Link to article in PubMed

Journal Title

PLoS genetics

PubMed ID

24586199

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.