Student Author(s)

Zhifeng Liang

GSBS Program

Neuroscience

UMMS Affiliation

Department of Psychiatry

Date

3-9-2011

Document Type

Article

Medical Subject Headings

Brain; Brain Mapping; Rats; Magnetic Resonance Imaging

Disciplines

Neuroscience and Neurobiology

Abstract

Intrinsic connectional architecture of the brain is a crucial element in understanding the governing principle of brain organization. To date, enormous effort has been focused on addressing this issue in humans by combining resting-state functional magnetic resonance imaging (rsfMRI) with other techniques. However, this research area is significantly underexplored in animals, perhaps because of confounding effects of anesthetic agents used in most animal experiments on functional connectivity. To bridge this gap, we have systematically investigated the intrinsic connectional architecture in the rodent brain by using a previously established awake-animal imaging model. First, group independent component analysis was applied to the rsfMRI data to extract elementary functional clusters of the brain. The connectional relationships between these clusters, as evaluated by partial correlation analysis, were then used to construct a graph of whole-brain neural network. This network exhibited the typical features of small-worldness and strong community structures seen in the human brain. Finally, the whole-brain network was segregated into community structures using a graph-based analysis. The results of this work provided a functional atlas of intrinsic connectional architecture of the rat brain at both intraregion and interregion levels. More importantly, the current work revealed that functional networks in rats are organized in a nontrivial manner and conserve fundamental topological properties that are also seen in the human brain. Given the high psychopathological relevance of network organization of the brain, this study demonstrated the feasibility of studying mechanisms and therapies of multiple neurological and psychiatric diseases through translational research.

Comments

Citation: Journal of Neuroscience. 2011 Mar 9;31(10):3776-83. Link to article on publisher's website

Publisher PDF posted as allowed by the publisher's author rights policy at http://www.jneurosci.org/site/misc/ifa_policies.xhtml#copyright. Copyright of all material published in The Journal of Neuroscience remains with the authors. The authors grant the Society for Neuroscience an exclusive license to publish their work for the first 6 months. After 6 months the work becomes available to the public to copy, distribute, or display under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported license.

Related Resources

Link to article in PubMed

PubMed ID

21389232