GSBS Student Publications

Title

Membrane-bound glyceraldehyde-3-phosphate dehydrogenase and multiphasic erythrocyte sugar transport

GSBS Program

Biochemistry & Molecular Pharmacology

UMMS Affiliation

Graduate School of Biomedical Sciences; Department of Biochemistry and Molecular Pharmacology

Date

5-6-1998

Document Type

Article

Medical Subject Headings

3-O-Methylglucose; Adenosine Triphosphate; Biological Transport; Carbohydrates; Erythrocyte Membrane; Erythrocytes; Glucose Transporter Type 1; Glyceraldehyde-3-Phosphate Dehydrogenases; Humans; Monosaccharide Transport Proteins; NAD; Protein Binding

Disciplines

Life Sciences | Medicine and Health Sciences

Abstract

Net sugar import by human erythrocytes consists of ATP-modulated rapid and slow phases while sugar export consists of a single slow phase. We have proposed that this behaviour results from obligate substrate tunnelling from transporter to bulk cytosol through a complex containing high-affinity, low-capacity sugar binding sites (Cloherty, Sultzman, Zottola and Carruthers, 1995). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known to compartmentalize ATP delivery to erythrocyte membrane ATPases and interact directly with the erythrocyte glucose transporter in vitro. The present study examines the possibility that GAPDH is an obligate component of the hypothesized sugar-binding complex. GAPDH remains associated with the erythrocyte membrane following cell lysis and remains associated with the cytoskeleton under conditions where more than 99% of the membrane glucose transport protein (GLUT1) is released by detergent (Triton X-100). GAPDH is released from erythrocyte membranes upon exposure to Mg.ATP or to NADH. ATP displacement of membrane-bound GAPDH is half-maximal at 200 microM ATP and appears to involve ATP interaction with multiple, co-operative sites. GAPDH interaction with purified tetrameric GLUT1 is saturable, co-operative and also inhibited by ATP. ATP inhibition of GAPDH binding to purified tetrameric GLUT1 is less effective than ATP inhibition of GAPDH binding to intact erythrocyte membranes. Removal of cellular GAPDH by exposing erythrocyte membranes to NADH prior to membrane resealing neither affects ATP modulation of sugar transport nor reduces biphasic net sugar uptake to a single phase. We conclude that ATP-sensitive GAPDH interaction with the cytoplasmic surface of erythrocyte membranes and GLUT1 is responsible neither for ATP modulation of sugar transport nor for multiphasic net sugar import by human red cells.

Rights and Permissions

Citation: Exp Physiol. 1998 Mar;83(2):195-202.

Related Resources

Link to article in PubMed

Journal Title

Experimental physiology

PubMed ID

9568479