GSBS Dissertations and Theses

ORCID ID

0000-0002-6596-421X

Approval Date

8-22-2017

Document Type

Doctoral Dissertation

Academic Program

Translational Science

Department

Department of Medicine, Cardiovascular Division

First Thesis Advisor

Jane E. Freedman, MD

Keywords

Platelets, RNA, RNA uptake

Abstract

As our understanding of the platelet’s systemic role continues to expand beyond hemostasis and thrombosis, interrogation of the platelet’s ability to affect diverse biological processes is required. Studies of the platelet’s non-traditional roles have focused on developing our understanding of the platelet’s relation to specific disease phenotypes as well as elucidation of platelet characteristics, content, and function. The generic content, traditional function and heterogeneity of platelets have long been accepted; more ambiguous and controversial has been how these factors are interrelated.

Investigation of platelet content revealed the presence of biologically functional RNA in anucleated platelets, the correlation of platelet RNA to distinct phenotypes, and the ability of platelets to transfer RNA to other vascular cells; however how these processes occur is unclear. To further interrogate platelet RNA processes, we utilized sorting and RNA sequencing to develop platelet subpopulation transcriptome profiles. We found that platelet heterogeneity extends to the platelet transcriptome: distinct RNA profiles exist dependent on platelet size. We hypothesized that this RNA heterogeneity is the result of RNA transfer between platelets and vascular cells. Using in vitro and in vivo modeling, we were able to show the novel ability of platelets to take up RNA from vascular cells, correlating to the unique functional profile associated with small platelet transcriptomes. These findings reveal a role for platelet RNA transfer in platelet RNA heterogeneity, with potential correlation to platelet functional diversity previously proposed. The ability of the platelet to bidirectionally transfer RNA within circulation has implications for vascular health and beyond.

DOI

10.13028/M2468G

Rights and Permissions

Copyright is held by the author, with all rights reserved.

Available for download on Wednesday, October 02, 2019

Share

COinS