GSBS Dissertations and Theses

Approval Date

8-10-2016

Document Type

Doctoral Dissertation

Academic Program

Immunology and Microbiology

Department

Program in Molecular Medicine

First Thesis Advisor

Paul Clapham, Ph.D.

Keywords

HIV-1, HIV Infections, Human Immunodeficiency Virus env Gene Products, High-Throughput Nucleotide Sequencing

Subjects

Dissertations, UMMS; HIV-1; HIV Infections; env Gene Products, Human Immunodeficiency Virus; High-Throughput Nucleotide Sequencing

Abstract

Despite the development of effective antiretroviral treatments, there is still no cure for HIV-1. Major barriers to HIV-1 eradication include the diversity of intrapatient viral quasispecies and the establishment of reservoirs in tissue sanctuary sites. A better understanding of these populations is required for targeted treatments. While previous studies have examined the relationship between brain and blood or immune tissues, few have looked at and compared the properties of viruses from other tissue compartments. In this study, 75 full length HIV-1 envelopes were isolated from the frontal lobe, occipital lobe, parietal lobe, colon, lung, and lymph node of an HIV-1 infected subject. No envelopes could be amplified from the plasma or serum. Envelopes were subjected to genotypic and phenotypic characterization. Of the 75 envelopes, 53 were able to infect HeLa TZM-bl cells. The greatest proportion of non-functional envelopes was from the lung, a result of APOBEC-induced hypermutation. Lower frequencies of hypermutation were also observed in the occipital lobe and colon. Envelopes from regions of the brain were almost all macrophage tropic, while those from the body were predominantly non-macrophage tropic. All envelopes used CCR5 as a coreceptor. Phylogenetic analyses showed that sequences were compartmentalized inside the brain. These findings were also observed using PacBio next generation sequencing to examine 32,152 full length sequences. Envelopes from tissues of the body displayed greater variation in sequence length, charge, and number of potential N-linked glycosylation sites in comparison to envelopes from tissues of the brain. Increased variation was also observed in IC50s for inhibition and neutralization assays using sCD4, maraviroc, b12, PG16, 17b, and 447-52D. The increased variation observed in envelopes from tissues outside the brain suggests that different pressures may be influencing the evolution of these viruses and emphasizes the importance of further studies in these tissue sites.

DOI

10.13028/M23K5T

Rights and Permissions

Copyright is held by the author, with all rights reserved.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.