GSBS Dissertations and Theses

Approval Date

3-25-2016

Document Type

Doctoral Dissertation

Academic Program

Interdisciplinary Graduate Program

Department

Program in Molecular Medicine

First Thesis Advisor

William Theurkauf, PhD

Keywords

Caenorhabditis elegans, Chromatin, Chromosome Segregation, Genetic Dosage Compensation, Adenosine Triphosphatases, DNA-Binding Proteins

Subjects

Dissertations, UMMS; Caenorhabditis elegans; Chromatin; Chromosome Segregation; Dosage Compensation, Genetic; Adenosine Triphosphatases; DNA-Binding Proteins

Abstract

Chromatin is organized dynamically to accommodate different biological processes. One of the factors required for proper chromatin organization is a group of complexes called condensins. Most eukaryotes have two conserved condensins (I and II) required for chromosome segregation. C. elegans has a third condensin (IDC) that specializes in dosage compensation, a process that down-regulates X gene dosage in XX hermaphrodites to match the dosage in XO males. How the three condensins are regulated is not well understood. Here, I present the discovery and characterization of a novel condensin regulator, SMCL-1.

We identified SMCL-1 through purification of a MAP-tagged condensin subunit. Condensins are comprised of SMC ATPases and regulatory CAP proteins; SMCL-1 interacts most abundantly with condensin SMC subunits and resembles the ATPase domain of SMC proteins. Interestingly, the SMCL-1 protein has residues that differ from SMC consensus and potentially render SMCL-1 incapable of hydrolyzing ATP. Worms harboring smcl-1 deletion are viable and show no detectable phenotype. However, deleting smcl-1 in a condensin hypomorph mildly suppresses condensin I and IDC mutant phenotypes, suggesting that SMCL-1 functions as a negative regulator of condensin I and IDC. Consistent with this, overexpression of SMCL-1 leads to condensin loss-of-function phenotypes such as lethality, segregation defects and disruption of IDC localization on the X chromosomes. Homology searches based on the unique ATPase domain of SMCL-1 reveal that SMCL-1-like proteins are present only in organisms also predicted to have condensin IDC. Taken together, we conclude that SMCL-1 is a negative modulator of condensin functions and we propose a role for SMCL-1 in helping organisms adapt to having a third condensin by maintaining the balance among three condensin complexes.

DOI

10.13028/M2V018

Rights and Permissions

Copyright is held by the author, with all rights reserved.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.