GSBS Dissertations and Theses

Approval Date

3-30-2015

Document Type

Doctoral Dissertation

Academic Program

Clinical and Population Health Research, MD/PhD

Department

Neurology

First Thesis Advisor

David Paydarfar, MD

Keywords

Biological Models, Physiological Adaptation, Theoretical Models, Statistical Models, Signal Transduction, Algorithms, Physiological Feedback

Subjects

Dissertations, UMMS; Models, Biological; Adaptation, Physiological; Models, Theoretical; Models, Statistical; Signal Transduction; Algorithms; Feedback, Physiological

Abstract

Switches play an important regulatory role at all levels of biology, from molecular switches triggering signaling cascades to cellular switches regulating cell maturation and apoptosis. Medical therapies are often designed to toggle a system from one state to another, achieving a specified health outcome. For instance, small doses of subpathologic viruses activate the immune system’s production of antibodies. Electrical stimulation revert cardiac arrhythmias back to normal sinus rhythm. In all of these examples, a major challenge is finding the optimal stimulus waveform necessary to cause the switch to flip. This thesis develops, validates, and applies a novel model-independent stochastic algorithm, the Extrema Distortion Algorithm (EDA), towards finding the optimal stimulus. We validate the EDA’s performance for the Hodgkin-Huxley model (an empirically validated ionic model of neuronal excitability), the FitzHugh-Nagumo model (an abstract model applied to a wide range of biological systems that that exhibit an oscillatory state and a quiescent state), and the genetic toggle switch (a model of bistable gene expression). We show that the EDA is able to not only find the optimal solution, but also in some cases excel beyond the traditional analytic approaches. Finally, we have computed novel optimal stimulus waveforms for aborting epileptic seizures using the EDA in cellular and network models of epilepsy. This work represents a first step in developing a new class of adaptive algorithms and devices that flip biological switches, revealing basic mechanistic insights and therapeutic applications for a broad range of disorders.

DOI

10.13028/M2N01D

Rights and Permissions

Copyright is held by the author, with all rights reserved.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.