GSBS Dissertations and Theses

Approval Date

1-8-2015

Document Type

Doctoral Dissertation

Academic Program

Neuroscience

Department

Department of Neurobiology; Freeman Lab

First Thesis Advisor

Marc Freeman

Keywords

Astrocytes, Synapses, Synaptic Transmission, Drosophila melanogaster, Neurons

Subjects

Dissertations, UMMS; Astrocytes; Synapses; Synaptic Transmission; Drosophila melanogaster; Neurons

Abstract

Astrocytes densely infiltrate the brain and intimately associate with synaptic structures. In the past 20 years, they have emerged as critical regulators of both synapse assembly and synapse function. During development, astrocytes modulate the formation of new synapses, and later, control refinement of synaptic connections in response to activity dependent cues. In a mature nervous system, astrocytes modulate synapse function through a variety of mechanisms. These include ion buffering, neurotransmitter uptake and the release of molecules that activate synaptic receptors. Through such roles, astrocytes shape the structure and function of neuronal circuits. However, how astrocytes and synapses reciprocally communicate during circuit assembly remains an unanswered question in the field. The vast majority of our understanding of astrocyte biology has come from studies conducted in mammals, where it is challenging to dissect molecular mechanisms with cell type specificity. Drosophila melanogaster is a less established model system for studying astrocyteneuron interactions, but its vast array of genetic tools and rapid life cycle promises great potential for precisely targeted manipulations. My thesis work has utilized Drosophila melanogaster to investigate the reciprocal nature of astrocyte-synapse communication. First, I characterized Drosophila late metamorphosis as a developmental stage in which astrocyte-synapse associations can be studied. My work demonstrates that during this time, when the adult Drosophila nervous system is being assembled, synapse formation relies on the coordinated infiltration of astrocyte membranes into the neuropil. Next, I show that in a reciprocal manner, neural activity can shape astrocyte biology during this time as well and impart long lasting effects on neuronal circuit function. In particular expression of the astrocyte GABA transporter (GAT) is modulated in an activity-dependent manner via astrocytic GABABR1/2 receptor signaling. Inhibiting astrocytic GABABR1/2 signaling strongly suppresses hyperexcitability in a Drosophila seizure model, vii arguing this pathway is important for modulating excitatory/inhibitory balance in vivo. Finally, utilizing the ease of the Drosophila system, I performed a reverse genetic screen to identify additional astrocyte factors involved in modulating excitatory-inhibitory neuronal balance.

DOI

10.13028/M2G888

Rights and Permissions

Copyright is held by the author, with all rights reserved.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.