GSBS Dissertations and Theses

Approval Date

11-18-2014

Document Type

Doctoral Dissertation

Academic Program

Interdisciplinary Graduate Program

Department

Biochemistry and Molecular Pharmacology

First Thesis Advisor

Job Dekker, PhD

Keywords

Protein Conformation, Cystic Fibrosis, Cystic Fibrosis Transmembrane Conductance Regulator, Gene Expression, Gene Library, Human Genome, Luciferases, Transcription Factors

Subjects

Dissertations, UMMS; Protein Conformation; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Gene Expression; Gene Library; Genome, Human; Luciferases; Transcription Factors

Abstract

The three dimensional structure of the human genome is known to play a critical role in gene function and expression. I used chromosome conformation capture (3C) and 3C-carbon copy (5C) techniques to investigate the three-dimensional structure of the cystic fibrosis transmembrane conductance regulator (CFTR) locus. This is an important disease gene that, when mutated, causes cystic fibrosis. 3C experiments identified four distinct looping elements that contact the CFTR gene promoter only in CFTR-expressing cells. Using 5C, I expanded the region of study to a 2.8 Mb region surrounding the CFTR gene. The 5C study shows 7 clear topologically associating domains (TADs) present at the locus, identical in all five cell lines tested, regardless of gene expression status. CFTR and all its known regulatory elements are contained within one TAD, suggesting TADs play a role in constraining promoters to a local search space. The four looping elements identified in the 3C experiment and confirmed in the 5C experiment were then tested for enhancer activity using a luciferase assay, which showed that elements III and IV could act as enhancers. These elements were tested against a library of human transcription factors in a yeast one-hybrid assay to identify potential binding proteins. Element III gave two strong candidates, TCF4 and LEF1. A literature search supported these transcription factors as playing a role in CFTR gene expression. Overall, this work represents a model locus that can be used to test important questions regarding the role of three dimensional looping on gene expression.

DOI

10.13028/M2SK51

Rights and Permissions

Copyright is held by the author, with all rights reserved.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.