Date

4-29-2014

UMMS Affiliation

Graduate School of Biomedical Sciences, Interdisciplinary Graduate Program

Document Type

Dissertation, Doctoral

Subjects

Dissertations, UMMS; Blastomeres; Caenorhabditis elegans; Carrier Proteins; Cell Differentiation; DNA-Binding Proteins; Ectoderm; Endoderm; Mesoderm; Transcription Factors

Disciplines

Cell Biology | Cellular and Molecular Physiology | Developmental Biology

Abstract

How do embryos develop with such poise from a single zygote to multiple cells with different identities, and yet survive? At the four-cell stage of the C. elegans embryo, only the blastomere EMS adopts the endo-mesoderm identity. This fate requires SKN-1, the master regulator of endoderm and mesoderm differentiation. However, in the absence of the RNA binding protein POS-1, EMS fails to fulfill its fate despite the presence of SKN-1. pos-1(-) embryos die gutless. Conversely, the RNA binding protein MEX-5 prevents ectoderm blastomeres from adopting the endo-mesoderm identity by repressing SKN-1. mex-5(-) embryos die with excess muscle at the expense of skin and neurons.

Through forward and reverse genetics, I found that genes gld-3/Bicaudal C, cytoplasmic adenylase gld-2, cye-1/Cyclin E, glp-1/Notch and the novel gene neg-1 are suppressors that restore gut development despite the absence of pos-1. Both POS-1 and MEX-5 bind the 3’UTR of neg-1 mRNA and its poly(A) tail requires GLD-3/2 for elongation. Moreover, neg-1 requires MEX-5 for its expression in anterior ectoderm blastomeres and is repressed in EMS by POS-1. Most neg-1(-) embryos die with defects in anterior ectoderm development where the mesoderm transcription factor pha-4 becomes ectopically expressed. This lethality is reduced by the concomitant loss of med- 1, a key mesoderm-promoting transcription factor.

Thus the endo-mesoderm identity of EMS is determined by the presence of SKN- 1 and the POS-1 repression of neg-1, whose expression is promoted by MEX-5. Together they promote the anterior ectoderm identity by repressing mesoderm differentiation. Such checks and balances ensure the vital plurality of cellular identity without the lethal tyranny of a single fate.

Rights and Permissions

Copyright is held by the author, with all rights reserved.

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.