GSBS Dissertations and Theses

Approval Date

6-18-2013

Document Type

Doctoral Dissertation

Academic Program

Interdisciplinary Graduate Program

Department

Program in Molecular Medicine

First Thesis Advisor

Stephen Doxsey, PhD

Keywords

Carrier Proteins, Cilia, Ciliary Motility Disorders, Mitosis

Subjects

Dissertations, UMMS; Carrier Proteins; Cilia; Ciliary Motility Disorders; Mitosis

Abstract

Disruption of cilia proteins results in a range of disorders called ciliopathies. However, the mechanism by which cilia dysfunction contributes to disease is not well understood. Intraflagellar transport (IFT) proteins are required for ciliogenesis. They carry ciliary cargo along the microtubule axoneme while riding microtubule motors. Interestingly, IFT proteins localize to spindle poles in non-ciliated, mitotic cells, suggesting a mitotic function for IFT proteins. Based on their role in cilia, we hypothesized that IFT proteins regulate microtubule-based transport during mitotic spindle assembly. Biochemical investigation revealed that in mitotic cells IFT88, IFT57, IFT52, and IFT20 interact with dynein1, a microtubule motor required for spindle pole maturation. Furthermore, IFT88 co-localizes with dynein1 and its mitotic cargo during spindle assembly, suggesting a role for IFT88 in regulating dynein-mediated transport to spindle poles. Based on these results we analyzed spindle poles after IFT protein depletion and found that IFT88 depletion disrupted EB1, γ-tubulin, and astral microtubule arrays at spindle poles. Unlike IFT88, depletion of IFT57, IFT52, or IFT20 did not disrupt spindle poles. Strikingly, the simultaneous depletion of IFT88 and IFT20 rescued the spindle pole disruption caused by IFT88 depletion alone, suggesting a model in which IFT88 negatively regulates IFT20, and IFT20 negatively regulates microtubulebased transport during mitosis. Our work demonstrates for the first time that IFT proteins function with dynein1 in mitosis, and it also raises the important possibility that mitotic defects caused by IFT protein disruption could contribute to the phenotypes associated with ciliopathies.

DOI

10.13028/M2FS4M

Rights and Permissions

Copyright is held by the author, with all rights reserved.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.