GSBS Dissertations and Theses

Approval Date

6-28-2013

Document Type

Doctoral Dissertation

Academic Program

Immunology and Microbiology

Department

Medicine

First Thesis Advisor

Robert Finberg, MD

Keywords

Decoy drugs, Decoy liposomes

Subjects

Influenza A virus; Influenza Vaccines; Liposomes; Molecular Targeted Therapy

Abstract

Influenza is a severe disease in humans and animals, causing upwards of 40,000 deaths every year in America alone. Influenza A virus (IAV) also causes periodic pandemics every 10 to 50 years, killing millions of people. Despite this, very few effective therapies are available. All strains of IAV are prone to developing resistance to antibodies due to the high mutation rate in the viral genome. Because of this mutation rate, a yearly vaccine must be generated before every flu season, and efficacy varies year to year. IAV has also mutated to escape several of the clinically-approved small molecule inhibitors. A therapeutic agent that targets a highly conserved region of the virus could bypass resistance and also be effective against multiple strains of IAV. IAV attachment is mediated by many individually weak hemagglutinin–sialic acid interactions that all together make a strong attachment to a host cell. Polymerized sialic acid analogs can recreate these interactions and block infection. However, they are not ideal therapeutics due to solubility issues and in vivo toxicity. We used liposomes as a novel means for delivery of the sialic acid-containing glycan, sialylneolacto-N-tetraose c (LSTc). LSTcbearing decoy liposomes form multivalent, polymer-like interactions with IAV. Decoy liposomes competitively bind IAV in hemagglutination inhibition assays and inhibit infection of target cells in a dose-dependent manner. LSTc decoy liposomes co-localize with IAV, while control liposomes do not. Inhibition is specific, as inhibition of Sendai virus and respiratory syncytial virus is not observed. In contrast, monovalent LSTc does not bind IAV or inhibit infectivity. LSTc decoy liposomes prevent the spread of IAV during multiple rounds of replication in vitro and extend survival of mice challenged with a lethal dose of virus. Considering the conservation of the hemagglutinin binding pocket and the ability of decoy liposomes to form high-avidity interactions with IAV hemagglutinin, our decoy liposomes have potential as a new therapeutic agent against emerging strains.

DOI

10.13028/M2V319

Rights and Permissions

Copyright is held by the author, with all rights reserved.

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.