GSBS Dissertations and Theses

Approval Date

4-4-2012

Document Type

Doctoral Dissertation

Department

Graduate School of Biomedical Sciences, Program in Immunology and Virology

Subjects

Dissertations, UMMS; Histocompatibility Antigens Class I; Antigen Presentation; CD8-Positive T-Lymphocytes; Ribosomes

Abstract

Peptides generated from cellular protein degradation via the ubiquitin-proteasome pathway are presented on MHC class I as a means for the immune system to monitor polypeptides being synthesized by cells. For CD8 + T cells to prevent the spread of an incipient infection, it appears essential they should be able to sense foreign polypeptides being synthesized as soon as possible. A prompt detection of viral proteins is of great importance for the success of an adaptive immune response. Defective ribosomal products (DRiPs) have been postulated as a preferential source which would allow for a rapid presentation of peptides derived from the degradation of all newly synthesized proteins. Although this hypothesis is intellectually appealing there is lack of experimental data supporting a mechanism that would prioritize presentation from DRiPs. In this dissertation I describe a series of experiments that probe the DRiPs hypothesis by assessing the contribution to class I presentation of model epitopes derived from DRiPs or from functional proteins. The results show that even at the early stages after mRNA synthesis DRiPs do not account for a significant fraction of the class I presented peptides. These observations suggest that the currently widespread model whereby a mechanism exists which selectively allows for DRiPs to preferentially contribute to class I antigen presentation, is incorrect. Rather, properly folded functional proteins can significantly contribute to class I antigen presentation as they are normally turned over by the ubiquitin-proteasome pathway.

Rights and Permissions

Copyright is held by the author, with all rights reserved.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.