GSBS Dissertations and Theses

Approval Date

7-21-2011

Document Type

Doctoral Dissertation

Department

Graduate School of Biomedical Sciences, Program in Cancer Biology

Subjects

Dissertations, UMMS; Erythropoiesis; DNA Methylation

Abstract

In the mammalian genome, 5‟-CpG-3‟ dinucleotides are frequently methylated, correlating with transcriptional silencing. Genome-wide waves of demethylation are thought to occur only twice during development, in primordial germ cells and in the pre-implantation embryo. They are followed by de novo methylation, setting up a pattern that is inherited throughout development. No global methylation changes are thought to occur during further somatic development, although methylation does alter at gene-specific loci, contributing to tissue-specific patterns of gene expression. Here we studied DNA methylation in differentiating mouse erythroblasts in vivo using several approaches including genomic-scale, reduced representation bisulfite sequencing (RRBS). Surprisingly, demethylation at the erythroid-specific β-globin locus was coincident with a wave of global DNA demethylation at most genomic elements, including repetitive elements and genes silenced in erythropoiesis. Over 30% of total methylation is irreversibly lost during erythroid differentiation. Demethylation occurred through a passive mechanism, requiring the rapid DNA replication triggered with the onset of erythroid terminal differentiation. Global loss of DNA methylation was not associated with a global increase in transcription, as determined by GeneChip analysis. We propose that global demethylation is a consequence of cellular mechanisms required for the rapid demethylation and induction of β-globin and other erythroid genes. Our findings demonstrate that, contrary to previously held dogma, DNA demethylation can occur globally during somatic cell differentiation, providing a new experimental model for the study of global demethylation in development and disease.

Rights and Permissions

Copyright is held by the author, with all rights reserved.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.