UMMS Affiliation

Graduate School of Biomedical Sciences, Biochemistry and Molecular Pharmacology Program

Document Type

Dissertation, Doctoral


Potassium Channels, Voltage-Gated; KCNQ1 Potassium Channel; Glycosylation; Protein Transport; Dissertations, UMMS


Biochemistry, Biophysics, and Structural Biology | Life Sciences | Medicine and Health Sciences


KCNE peptides are a class of type I transmembrane ß-subunits that assemble with and modulate the gating and ion conducting properties of a variety of voltage-gated K+ channels. Accordingly, mutations that affect the assembly and trafficking of K+ channel/KCNE complexes give rise to disease. The cellular mechanisms that oversee KCNE peptide assembly with voltage-gated K+ channels have yet to be elucidated. In Chapter II, we show that KCNE1 peptides are retained in the early stages of the secretory pathway until they co-assemble with KCNQ1 K+ channel subunits. Co-assembly with KCNQ1 channel subunits mediates efficient forward trafficking of KCNE1 peptides through the biosynthetic pathway and results in cell surface expression.

KCNE1 peptides possess two N-linked glycosylation sites on their extracellular N-termini. Progression of KCNE1 peptides through the secretory pathway can be visualized through maturation of N-glycans attached to KCNE1. In Chapter III, we examine the kinetics and efficiency of N-linked glycan addition to KCNE1 peptides. Mutations that prevent glycosylation of KCNE1 give rise to the disorders of arrhythmia and deafness. We show that KCNE1 acquires N-glycans co- and post-translationally. Mutations that prevent N-glycosylation at the co-translational site have a long range effect on the disruption of post-translational glycosylation and suggest a novel biogenic mechanism for disease.

In Chapter IV, we determine the presence of an additional post-translational modification on KCNE1 peptides. We define specific residues as sites of attachment of this modification identified as sialylated O-glycans and show that it occurs in native cardiac tissues where KCNE1 plays a role in the maintenance of cardiac rhythm.

Taken together, these observations demonstrate the importance of having correctly assembled K+ channel/KCNE complexes at the cell surface for their proper physiological function and define a role for the posttranslational modifications of KCNE peptides in the proper assembly and trafficking of K+ channel/KCNE complexes.

Rights and Permissions

Copyright is held by the author, with all rights reserved.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.