Date

5-7-2010

UMMS Affiliation

Graduate School of Biomedical Sciences, Biochemistry and Molecular Pharmacology Program

Document Type

Dissertation, Doctoral

Subjects

Potassium Channels, Voltage-Gated; KCNQ1 Potassium Channel; Glycosylation; Protein Transport; Dissertations, UMMS

Disciplines

Biochemistry, Biophysics, and Structural Biology | Life Sciences | Medicine and Health Sciences

Abstract

KCNE peptides are a class of type I transmembrane ß-subunits that assemble with and modulate the gating and ion conducting properties of a variety of voltage-gated K+ channels. Accordingly, mutations that affect the assembly and trafficking of K+ channel/KCNE complexes give rise to disease. The cellular mechanisms that oversee KCNE peptide assembly with voltage-gated K+ channels have yet to be elucidated. In Chapter II, we show that KCNE1 peptides are retained in the early stages of the secretory pathway until they co-assemble with KCNQ1 K+ channel subunits. Co-assembly with KCNQ1 channel subunits mediates efficient forward trafficking of KCNE1 peptides through the biosynthetic pathway and results in cell surface expression.

KCNE1 peptides possess two N-linked glycosylation sites on their extracellular N-termini. Progression of KCNE1 peptides through the secretory pathway can be visualized through maturation of N-glycans attached to KCNE1. In Chapter III, we examine the kinetics and efficiency of N-linked glycan addition to KCNE1 peptides. Mutations that prevent glycosylation of KCNE1 give rise to the disorders of arrhythmia and deafness. We show that KCNE1 acquires N-glycans co- and post-translationally. Mutations that prevent N-glycosylation at the co-translational site have a long range effect on the disruption of post-translational glycosylation and suggest a novel biogenic mechanism for disease.

In Chapter IV, we determine the presence of an additional post-translational modification on KCNE1 peptides. We define specific residues as sites of attachment of this modification identified as sialylated O-glycans and show that it occurs in native cardiac tissues where KCNE1 plays a role in the maintenance of cardiac rhythm.

Taken together, these observations demonstrate the importance of having correctly assembled K+ channel/KCNE complexes at the cell surface for their proper physiological function and define a role for the posttranslational modifications of KCNE peptides in the proper assembly and trafficking of K+ channel/KCNE complexes.

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.