Date

9-11-2009

UMMS Affiliation

Graduate School of Biomedical Sciences, Interdisciplinary Graduate Program

Document Type

Dissertation, Doctoral

Subjects

Basic Helix-Loop-Helix Transcription Factors; Caenorhabditis elegans; Transcription Factors; Academic Dissertations; Dissertations, UMMS

Disciplines

Life Sciences | Medicine and Health Sciences

Abstract

It has become increasingly clear that transcription factors (TFs) play crucial roles in the development and day-to-day homeostasis that all biological systems experience. TFs target particular genes in a genome, at the appropriate place and time, to regulate their expression so as to elicit the most appropriate biological response from a cell or multicellular organism. TFs can often be grouped into families based on the presence of similar DNA binding domains, and these families are believed to have expanded and diverged throughout evolution by several rounds of gene duplication and mutation. The extent to which TFs within a family have functionally diverged, however, has remained unclear. We propose that systematic analysis of multiple aspects, or parameters, of TF functionality for entire families of TFs could provide clues as to how divergent paralogous TFs really are.

We present here a multiparameter integrated network of the activity of the basic helix-loop-helix (bHLH) TFs from the nematode Caenorhabditis elegans. Our data, and the resulting network, indicate that several parameters of bHLH function contribute to their divergence and that many bHLH TFs and their associated parameters exhibit a wide range of connectivity in the network, some being uniquely associated to one another, whereas others are highly connected to multiple parameter associations.

We find that 34 bHLH proteins dimerize to form 30 bHLH dimers, which are expressed in a wide range of tissues and cell types, particularly during the development of the nematode. These dimers bind to E-Box DNA sequences and E-Box-like sequences with specificity for nucleotides central to and flanking those E-Boxes and related sequences.

Our integrated network is the first such network for a multicellular organism, describing the dimerization specificity, spatiotemporal expression patterns, and DNA binding specificities of an entire family of TFs. The network elucidates the state of bHLH TF divergence in C. elegans with respect to multiple functional parameters and suggests that each bHLH TF, despite many molecular similarities, is distinct from its family members. This functional distinction may indeed explain how TFs from a single family can acquire different biological functions despite descending from common genetic ancestry.

Grove Thesis Table IV-2.xls (13457 kB)
Table IV-2. 8-mer enrichment score data (Format: XLS Size: 13.14 MB)

Grove Thesis Table IV-4.xls (926 kB)
Table IV-4. bHLH dimer candidate target gene lists (Format: XLS Size: 926 KB)