GSBS Dissertations and Theses

Approval Date

9-9-2008

Document Type

Doctoral Dissertation

Department

Graduate School of Biomedical Sciences; Department of Biochemistry and Molecular Pharmacology

Subjects

KCNQ1 Potassium Channel; Ion Channel Gating; Membrane Potentials; KCNQ Potassium Channels; Potassium Channels, Voltage-Gated; Protein Structure, Secondary; Academic Dissertations; Dissertations, UMMS

Abstract

KCNQ1 is a homotetrameric voltage-gated potassium channel expressed in cardiomyocytes and epithelial tissues. However, currents arising from KCNQ1 have never been physiologically observed. KCNQ1 is able to provide the diverse potassium conductances required by these distinct cell types through coassembly with and modulation by type I transmembrane β-subunits of the KCNE gene family.

KCNQ1-KCNE K+ channels play important physiological roles. In cardiac tissues the association of KCNQ1 with KCNE1 gives rise to IKs, the slow delayed outwardly rectifying potassium current. IKs is in part responsible for repolarizing heart muscle, and is therefore crucial in maintaining normal heart rhymicity. IKs channels help terminate each action potential and provide cardiac repolarization reserve. As such, mutations in either subunit can lead to Romano-Ward Syndrome or Jervell and Lange-Nielsen Syndrome, two forms of Q-T prolongation. In epithelial cells, KCNQ1-KCNE1, KCNQ1-KCNE2 and KCNQ1-KCNE3 give rise to potassium currents required for potassium recycling and secretion. These functions arise because the biophysical properties of KCNQ1 are always dramatically altered by KCNE co-expression.

We wanted to understand how KCNE peptides are able to modulate KCNQ1. In Chapter II, we produce partial truncations of KCNE3 and demonstrate the transmembrane domain is necessary and sufficient for both assembly with and modulation of KCNQ1. Comparing these results with published results obtained from chimeric KCNE peptides and partial deletion mutants of KCNE1, we propose a bipartite modulation residing in KCNE peptides. Transmembrane modulation is either active (KCNE3) or permissive (KCNE1). Active transmembrane KCNE modulation masks juxtamembranous C-terminal modulation of KCNQ1, while permissive modulation allows C-terminal modulation of KCNQ1 to express. We test our hypothesis, and demonstrate C-terminal Long QT point mutants in KCNE1 can be masked by active trasnsmembrane modulation.

Having confirmed the importance the C-terminus of KCNE1, we continue with two projects designed to elucidate KCNE1 C-terminal structure. In Chapter III we conduct an alanine-perturbation scan within the C-terminus. C-terminal KCNE1 alanine point mutations result in changes in the free energy for the KCNQ1-KCNE1 channel complex. High-impact point mutants cluster in an arrangement consistent with an alphahelical secondary structure, "kinked" by a single proline residue. In Chapter IV, we use oxidant-mediated disulfide bond formation between non-native cysteine residues to demonstrate amino acid side chains residing within the C-terminal domain of KCNE1 are close and juxtaposed to amino acid side chains on the cytoplasmic face of the KCNQ1 pore domain. Many of the amino acids identified as high impact through alanine perturbation correspond with residues identified as able to form disulfide bonds with KCNQ1. Taken together, we demonstrate that the interaction between the C-terminus of KCNE1 and the pore domain of KCNQ1 is required for the proper modulation of KCNQ1 by KCNE1, and by extension, normal IKs function and heart rhymicity.

Rights and Permissions

Copyright is held by the author, with all rights reserved.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.