GSBS Dissertations and Theses

Approval Date

8-14-2008

Document Type

Doctoral Dissertation

Department

Graduate School of Biomedical Sciences, Interdisciplinary Graduate Program

Subjects

DNA Repair; DNA Damage; Casein Kinase II; Histones; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Academic Dissertations

Abstract

The study of DNA templated events is not complete without considering the chromatin environment. Histone modifications help to regulate gene expression, chromatin compaction and DNA replication. Because DNA damage repair must occur within the context of chromatin, many remodeling enzymes and histone modifications work in concert to enable access to the DNA and aid in restoration of chromatin after repair is complete. CK2 has recently been identified as a histone modifying enzyme. In this study we identify CK2 as a histone H3 tail kinase in vitro, identify the phospho-acceptor site in vitro, and characterize the modification in vivo in S. cerevisiae. We also characterize the DNA damage phenotype of a strain lacking a single catalytic subunit of CK2. We further characterize the CK2- dependent phosphorylation of serine 1 of histone H4 in vivo. We find that it is recruited directly to the site of a DSB and this recruitment requires the SIN3/RPD3 histone deacetylase complex. We also characterize the contribution of H4 serine 1 phosphorylation in chromatin compaction by using reconstituted nucleosomal arrays to study folding in the analytical ultracentrifuge.

Rights and Permissions

Copyright is held by the author, with all rights reserved.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.