GSBS Dissertations and Theses

Approval Date

August 2000

Document Type

Doctoral Dissertation

Department

Graduate School of Biomedical Sciences, Biochemistry & Molecular Biology

Subjects

Rec A Recombinases; Adenosine Triphosphate; Recombination, Genetic; DNA-Binding Proteins; DNA Repair; Academic Dissertations; Dissertations, UMMS

Abstract

ATP plays a critical role in the regulation of many enzyme processes. In this work, I have focused on the ATP mediated regulation of the recombination processes catalyzed by the E. coli RecA and the human Rad51 proteins. The RecA protein is a multifunctional enzyme, which plays a central role in the processes of recombinational DNA repair, homologous genetic recombination and in the activation of the cellular SOS response to DNA damage. Each of these functions requires a common activating step, which is the formation of a RecA-ATP-ssDNA nucleoprotein filament. The binding of ATP results in the induction of a cooperative, high affinity ssDNA binding state within RecA (Menetski & Kowalczykowski, 1985b; Silver & Fersht, 1982). Data presented here identifies Gln194 as the NTP binding site "γ-phosphate sensor", in that mutations introduced at this residue disrupt all ATP induced RecA activities, while basal enzyme function is maintained. Additionally, we have dissected the parameters contributing to cooperative nucleoprotein filament assembly in the presence of cofactor. We show that the dramatic increase in the affinity of RecA for ssDNA in the presence of ATP is a result of a significant increase in the cooperative nature of filament assembly and not an increase in the intrinsic affinity of a RecA monomer for ssDNA.

Previous work using both mutagenesis and engineered disulfides to study the subunit interface of the RecA protein has demonstrated the importance of Phe217 for the maintenance of both the structural and functional properties of the protein (Skiba & Knight, 1994; Logan et al., 1997; Skiba et al., 1999). A Phe217Tyr mutation results in a striking increase in cooperative filament assembly. In this work, we identify Phe217 as a key residue within the subunit interface and clearly show that Phe217 is required for the transmission of ATP mediated allosteric information throughout the RecA nucleoprotein filament.

The human Rad51 (hRad51) protein, like its bacterial homolog RecA, catalyzes genetic recombination between homologous single and double stranded DNA substrates. This suggests that the overall process of homologous recombination may be conserved from bacteria to humans. Using IAsys biosensor technology, we examined the effect of ATP on the binding of hRad51 to ssDNA. Unlike RecA, we show that hRad51 binds cooperatively and with high affinity to ssDNA both in the presence and absence of nucleotide cofactor. These results show that ATP plays a fundamentally different role in hRad51 vs. RecA mediated processes.

In summary, through the work presented in this dissertation, we have defined the critical molecular determinants for ATP mediated allosteric regulation within RecA. Furthermore, we have shown that ATP is not utilized by Rad51 in the same manner as shown for RecA, clearly defining a profound mechanistic difference between the two proteins. Future studies will define the requirement for ATP in hRad51 mediated processes.

Comments

Some images did not scan well. Please consult original document.

Rights and Permissions

Copyright is held by the author, with all rights reserved.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.