GSBS Dissertations and Theses

Approval Date

1-14-1998

Document Type

Doctoral Dissertation

Department

Graduate School of Biomedical Sciences, Department of Biochemistry

Subjects

Trans-Activation (Genetics); Transcription Factors; Gene Expression Regulation; RNA Polymerase II; Academic Dissertations; Dissertations, UMMS

Abstract

Transcription by RNA polymerase II is a highly regulated process requiring a number of general and promoter specific transcription factors. Although many of the factors involved in the transcription reaction are known, exactly how they function to stimulate or repress transcription is not well understood. Central to understanding gene regulation is understanding the mechanism by which promoter specific transcription activators (activators) stimulate transcription.

A group of factors called coactivators have been shown to be required for activator function in vitro. The best characterized coactivators to date are members of the TFIID complex. TFIID is a multisubunit complex composed of the TATA box binding protein (TBP) and 8-12 TBP associated factors (TAFIIs). Results from numerous in vitro experiments indicate that TAFIIs function by binding to activators and forming a bridge between the activator and the basal transcription machinery. In order to gain insight into the mechanism by which activators stimulate transcription, we chose to analyze the in vivo function of TAFIIs, their proposed targets.

Results from the genetic disruption of a number of TAFIIs in the yeast Saccharomyces cerevisiae showed that most are encoded by essential genes. In order to study their function, temperature-sensitive and conditional alleles were constructed. Cells depleted of individual TAFIIs by either of these two methods displayed no defect in global transcription activation. Inactivation of yTAFII17, however, resulted in a promoter specific defect. In addition, inactivation of yTAFII145, yTAFII90, or TSM1, resulted in an inability of cells to progress through the cell-cycle.

In an attempt to identify genes whose expression required yTAFII90, we performed subtractive hybridization on strains containing wild-type and temperature-sensitive alleles. Although this technique successfully identified genes differentially expressed in the two strains, it failed to identify genes whose expression required yTAFII90.

These results indicate that TAFIIs are not the obligatory targets of activators, and that other factors must provide this role in vivo. Furthermore, that many of TAFIIs are required for cell-cycle progression.

Comments

Some images did not scan well. Please consult original document.

Rights and Permissions

Copyright is held by the author, with all rights reserved.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.