GSBS Dissertations and Theses

Approval Date

September 2003

Document Type

Doctoral Dissertation

Department

Graduate School of Biomedical Sciences

Subjects

ADP Ribose Transferases; Epitopes, T-Lymphocyte; Cell Nucleus; Diabetes Mellitus, Type 1; Rats, Inbred BB; Academic Dissertations; Dissertations, UMMS

Abstract

The glycophosphatidylinositol(GPI)-linked membrane protein ART2 is an antigenic determinant for T lymphocytes that regulate the expression of diabetes in the BB/W rat model. Though little is understood of the physiologic role of ART2 on T lymphocytes, ART2 is a member of the mono-ADP-ribosyl transferase subgroup ofthe ADP-ribosyl transferase (ART) protein family. The ART protein family, which traditionally has been divided into mono-ADP-ribosyl transferases (mono-ARTs), poly(ADP)-ribose polymerases (PARPs), and ADP-ribosyl cyclases, influences various aspects of cellular physiology including: apoptosis, DNA damage repair, chromatin remodeling, telomere replication, cellular transport, immune regulation, neuronal function, and bacterial virulence. A structural alignment of ART2.2 with chicken PARP indicated the potential for ART2.2 to catalyze ADP-ribose polymers in an activity thought to be specific to the PARP subgroup and important for their regulation of nuclear processes. Kinetic studies determined that the auto-ADP-ribosyl transferase activity of ART2.2 is multitmeric and heterogeneous in nature. Hydroxylamine-cleaved ADP-ribose moieties from the ART2.2 multimers ran as polymers on a modified sequencing gel, and digestion of the polymers with snake-venom phosphodiesterase produced AMP and the poly(ADP)ribose-specific product, PR-AMP, which was resolved by analytical HPLC and structurally confirmed by ESI-MS. The ratio of AMP to PR-AMP was higher than that of PARP raising the possibility that the ART2.2 polymers had a different branching structure than those of PARP. This alternative branching was confirmed by the presence of ribose phosphate polymers in the snake venom phophodiesterase treated samples. The site of the auto-poly(ADP)-ribose modification was determined to be R185, a residue previously proposed to influence the level of auto-ADP ribosylation of ART2.2 by mutational analysis. These data provide the first demonstration of a hybrid between mono-ARTs and PARPs and are the earliest indication that PARP-like enzymes can exist outside the nucleus and on the cell surface.

Comments

Some images did not scan well. Please consult original document.

Rights and Permissions

Copyright is held by the author, with all rights reserved.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.