Date

6-3-2004

UMMS Affiliation

Graduate School of Biomedical Sciences, Biochemistry and Molecular Pharmacology Neuroscience Program

Document Type

Dissertation, Doctoral

Subjects

Antigens; Centrosome; Microtubule-Associated Proteins; Microtubules; Tubulin; Xenopus Proteins; Academic Dissertations; Dissertations, UMMS

Disciplines

Life Sciences | Medicine and Health Sciences

Abstract

Pericentrin is a molecular scaffold protein. It anchors protein kinases, (PKB, (Purohit, personal communication), PKC, (Chen et al., 2004), PKA Diviani et al., 2000), the γ tubulin ring complex, (γ TuRC) (Zimmerman et al., 2004), and possibly dynein (Purohit et al., 1999) to the spindle pole. The γ TuRC is a ~ 2 MDa complex which binds the minus ends of microtubules and nucleates microtubules in vitro, (Zheng et al., 1995). Prior to this work, nothing was known about the association of the γTuRC with pericentrin. Herein I report the biochemical identification of a large protein complex in Xenopus extracts containing pericentrin, the γ TuRC, and other as yet unidentified proteins. Immunodepletion of γ tubulin results in co-depletion of pericentrin, indicating that virtually all the pericentrin in a Xenopus extract is associated with γ tubulin. However, pericentrin is not a member of the, γ TuRC, since isolated γ TuRCs do not contain pericentrin. The association of pericentrin with the γ TuRC is readily disrupted, resulting in two separable complexes, a small pericentrin containing complex of approximately 740 KDa and the the γ TuRC, 1.9 MDa in Xenopus. Co overexpression/ coimmunoprecipitation and yeast two hybrid studies demonstrate that pericentrin binds the γTuRC through interactions with both GCP2 and GCP3. When added to Xenopus mitotic extracts, the GCP2/3 binding domain uncoupled γ TuRCs from centrosomes, inhibited microtubule aster assembly and induced rapid disassembly of pre-assembled asters. All phenotypes were significantly reduced in a pericentrin mutant with diminished GCP2/3 binding, and were specific for mitotic centro somal asters as I observed little effect on interphase asters or on asters assembled by the Ran-mediated centrosome-independent pathway. Overexpression of the GCP2/3 binding domain of pericentrin in somatic cells perturbed mitotic astral microtubules and spindle bipolarity. Likewise pericentrin silencing by small interfering RNAs in somatic cells disrupted γ tubulin localization and spindle organization in mitosis but had no effect on γ tubulin localization or microtubule organization in interphase cells. Pericentrin silencing or overexpression induced G2/antephase arrest followed by apoptosis in many but not all cell types. I conclude that pericentrin anchoring of γ tubulin complexes at centrosomes in mitotic cells is required for proper spindle organization and that loss of this anchoring mechanism elicits a checkpoint response that prevents mitotic entry and triggers apoptotic cell death. Additionally, I provide functional and in vitro evidence to suggest that the larger pericentrin isoform (pericentrin B/ Kendrin) is not functionally homologous to pericentrin/pericentrin A in regard to it's interaction with the γ TuRC.

Comments

Some images did not scan well. Please consult original document. Pages iii-x are duplicated in original publication.