University of Massachusetts Medical School Faculty Publications

UMMS Affiliation

Department of Orthopedics and Physical Rehabilitation; Program in Molecular Medicine; Diabetes Center of Excellence; School of Medicine

Publication Date

3-11-2017

Document Type

Article

Disciplines

Cell Biology | Endocrinology, Diabetes, and Metabolism | Orthopedics

Abstract

BACKGROUND: Poor bone quality, increased fracture risks, and impaired bone healing are orthopedic comorbidities of type 1 diabetes (T1DM). Standard osteogenic growth factor treatments are inadequate in fully rescuing retarded healing of traumatic T1DM long bone injuries where both periosteal and bone marrow niches are disrupted. We test the hypotheses that osteogenesis of bone marrow-derived stromal cells (BMSCs) and periosteum-derived cells (PDCs), two critical skeletal progenitors in long bone healing, are both impaired in T1DM and that they respond differentially to osteogenic bone morphogenetic proteins (BMPs) and/or insulin-like growth factor-1 (IGF-1) rescue.

METHODS: BMSCs and PDCs were isolated from Biobreeding Diabetes Prone/Worcester rats acquiring T1DM and normal Wistar rats. Proliferation, osteogenesis, and adipogenesis of the diabetic progenitors were compared with normal controls. Responses of diabetic progenitors to osteogenesis rescue by rhBMP-2/7 heterodimer (45 or 300 ng/ml) and/or rhIGF-1 (15 or 100 ng/ml) in normal and high glucose cultures were examined by alizarin red staining and qPCR.

RESULTS: Diabetic BMSCs and PDCs proliferated slower and underwent poorer osteogenesis than nondiabetic controls, and these impairments were exacerbated in high glucose cultures. Osteogenesis of diabetic PDCs was rescued by rhBMP-2/7 or rhBMP-2/7 + rhIGF-1 in both normal and high glucose cultures in a dose-dependent manner. Diabetic BMSCs, however, only responded to 300 ng/nl rhBMP-2/7 with/without 100 ng/ml rhIGF-1 in normal but not high glucose osteogenic culture. IGF-1 alone was insufficient in rescuing the osteogenesis of either diabetic progenitor. Supplementing rhBMP-2/7 in high glucose osteogenic culture significantly enhanced gene expressions of type 1 collagen (Col 1), osteocalcin (OCN), and glucose transporter 1 (GLUT1) while suppressing that of adipogenic marker peroxisome proliferator-activated receptor gamma (PPARgamma) in diabetic PDCs. The same treatment in high glucose culture only resulted in a moderate increase in Col 1, but no significant changes in OCN or GLUT1 expressions in diabetic BMSCs.

CONCLUSIONS: This study demonstrates more effective osteogenesis rescue of diabetic PDCs than BMSCs by rhBMP-2/7 with/without rhIGF-1 in a hyperglycemia environment, underscoring the necessity to tailor biochemical therapeutics to specific skeletal progenitor niches. Our data also suggest potential benefits of combining growth factor treatment with blood glucose management to optimize orthopedic therapeutic outcomes for T1DM patients.

Rights and Permissions

© The Author(s). 2017. Citation: Stem Cell Res Ther. 2017 Mar 11;8(1):65. doi: 10.1186/s13287-017-0521-6. Link to article on publisher's site

Related Resources

Link to Article in PubMed

Keywords

bone marrow-derived stromal cell, bone morphogenetic protein-2/7 heterodimer, growth factor rescue, hyperglycemia, insulin-like growth factor-1, osteogenesis, periosteum-derived cell, type 1 diabetes

Journal/Book/Conference Title

Stem cell research and therapy

PubMed ID

28283030

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.