University of Massachusetts Medical School Faculty Publications

UMMS Affiliation

Department of Neurobiology; Alkema Lab; Francis Lab; Graduate School of Biomedical Sciences, Neuroscience Program

Publication Date

4-2-2013

Document Type

Article

Disciplines

Behavioral Neurobiology | Neuroscience and Neurobiology

Abstract

Monoamines provide chemical codes of behavioral states. However, the neural mechanisms of monoaminergic orchestration of behavior are poorly understood. Touch elicits an escape response in Caenorhabditis elegans where the animal moves backward and turns to change its direction of locomotion. We show that the tyramine receptor SER-2 acts through a Galphao pathway to inhibit neurotransmitter release from GABAergic motor neurons that synapse onto ventral body wall muscles. Extrasynaptic activation of SER-2 facilitates ventral body wall muscle contraction, contributing to the tight ventral turn that allows the animal to navigate away from a threatening stimulus. Tyramine temporally coordinates the different phases of the escape response through the synaptic activation of the fast-acting ionotropic receptor, LGC-55, and extrasynaptic activation of the slow-acting metabotropic receptor, SER-2. Our studies show, at the level of single cells, how a sensory input recruits the action of a monoamine to change neural circuit properties and orchestrate a compound motor sequence.

Rights and Permissions

Citation: PLoS Biol. 2013;11(4):e1001529. doi: 10.1371/journal.pbio.1001529. Link to article on publisher's site

Comments

Copyright: 2013 Donnelly et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Co-authors Donnelly, Clark, and Pirri are doctoral students in the Neuroscience Program in the Graduate School of Biomedical Sciences (GSBS) at UMass Medical School.

Related Resources

Link to Article in PubMed

Journal/Book/Conference Title

PLoS biology

PubMed ID

23565061

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.