Poster Session

Start Date

20-5-2016 12:30 PM

Document Type

Poster Abstract

Description

Down syndrome is the leading genetic cause of intellectual disabilities, occurring in 1 out of 700 live births. Given that Down syndrome is caused by an extra copy of chromosome 21 that involves over-expression of 400 genes across a whole chromosome, it precludes any possibility of a genetic therapy. Our lab has long studied the natural dosage compensation mechanism for X chromosome inactivation. To “dosage compensate” X-linked genes between females and males, the X-linked XIST gene produces a large non-coding RNA that silences one of the two X chromosomes in female cells. The initial motivation of this study was to translate the natural mechanisms of X chromosome inactivation into chromosome therapy for Down syndrome. Using genome editing with zinc finger nucleases, we have successfully inserted a large XIST transgene into Chromosome 21 in Down syndrome iPS cells, which results in chromosome-wide transcriptional silencing of the extra Chromosome 21. Remarkably, deficits in proliferation and neural growth are rapidly reversed upon silencing one chromosome 21. Successful trisomy silencing in vitro surmounts the major first step towards potential development of “chromosome therapy” for Down syndrome. The human iPSC-based trisomy correction system we established opens a unique opportunity to identify therapeutic targets and study transplantation therapies for Down syndrome.

Keywords

Down syndrome, trisomy 21, chromosome therapy

Creative Commons License

Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

 
May 20th, 12:30 PM

Translating dosage compensation to trisomy 21

Down syndrome is the leading genetic cause of intellectual disabilities, occurring in 1 out of 700 live births. Given that Down syndrome is caused by an extra copy of chromosome 21 that involves over-expression of 400 genes across a whole chromosome, it precludes any possibility of a genetic therapy. Our lab has long studied the natural dosage compensation mechanism for X chromosome inactivation. To “dosage compensate” X-linked genes between females and males, the X-linked XIST gene produces a large non-coding RNA that silences one of the two X chromosomes in female cells. The initial motivation of this study was to translate the natural mechanisms of X chromosome inactivation into chromosome therapy for Down syndrome. Using genome editing with zinc finger nucleases, we have successfully inserted a large XIST transgene into Chromosome 21 in Down syndrome iPS cells, which results in chromosome-wide transcriptional silencing of the extra Chromosome 21. Remarkably, deficits in proliferation and neural growth are rapidly reversed upon silencing one chromosome 21. Successful trisomy silencing in vitro surmounts the major first step towards potential development of “chromosome therapy” for Down syndrome. The human iPSC-based trisomy correction system we established opens a unique opportunity to identify therapeutic targets and study transplantation therapies for Down syndrome.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.