Poster Session

Start Date

20-5-2016 12:30 PM

Document Type

Poster Abstract

Description

Pancreatic cancer (PanCa) has a dismal prognosis with five-year survival rates under 5%. PanCa is usally diagnosed at very late stages and even if diagnosed early, surgery is rarely an option. These factors contribute towards the bleak statistics for PanCa Chemo and radiation treatments having deleterious side-effects. There is therefore a clinical, unmet need for novel, targeted treatments with low morbidity in PanCa. Gemzar® (gemcitabine-HCl) is an FDA (Food and Drug Administration) approved chemotherapeutic drug that has been used to treat PanCa. However, intrinsic and acquired chemoresistance to gemcitabine contribute to the poor prognosis of PanCa. A combination of Abraxane® (albumin-stabilized paclitaxel nano-formulation) with gemcitabine has shown survival benefits and has now become the first line treatment for PanCa. Desmoplasia is a fundamental characteristic of PanCa that contributes significantly to its chemoresistance, making drug delivery to PanCa cells difficult. Nanomedicines combining multiple drugs can be designed to overcome this hurdle. This project aims at developing a targeted nanomedicine by using a combination of gemcitabine and paclitaxel encapsulated in polymeric nanoparticles for the treatment of PanCa. Oil/ water emulsion technique was employed for the preparation of poly (lactic-co-glycolic acid) (PLGA) nanoparticles encapsulating gemcitabine and paclitaxel. Synthesis protocols yielded drug-loaded PLGA nanoparticles with an average diameter less than 200 nm, with encapsulation efficiencies ranging from 40-70%. In vitro tests for cell viability studies using the MTT assay demonstrated lower cell viability in AsPC-1 cells when treated with these nano-formulations as compared to their free-drug counterparts. Current studies include conjugating drug-loaded PLGA-polyethylene glycol-Maleimide nanoparticles with transferrin peptide for targeted therapy, which is expected to prove more efficacious when tested for cell viability in vitro than its non-targeted formulations that have been obtained. These results therefore certify this nanotherapeutic approach as a potential therapy for PanCa.

Keywords

nanomedicine, pancreatic cancer, desmoplasia

Creative Commons License

Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

Share

COinS
 
May 20th, 12:30 PM

Transferrin Conjugated Polymeric Nanomedicine for Targeting Pancreatic Cancer using Paclitaxel and Gemcitabine

Pancreatic cancer (PanCa) has a dismal prognosis with five-year survival rates under 5%. PanCa is usally diagnosed at very late stages and even if diagnosed early, surgery is rarely an option. These factors contribute towards the bleak statistics for PanCa Chemo and radiation treatments having deleterious side-effects. There is therefore a clinical, unmet need for novel, targeted treatments with low morbidity in PanCa. Gemzar® (gemcitabine-HCl) is an FDA (Food and Drug Administration) approved chemotherapeutic drug that has been used to treat PanCa. However, intrinsic and acquired chemoresistance to gemcitabine contribute to the poor prognosis of PanCa. A combination of Abraxane® (albumin-stabilized paclitaxel nano-formulation) with gemcitabine has shown survival benefits and has now become the first line treatment for PanCa. Desmoplasia is a fundamental characteristic of PanCa that contributes significantly to its chemoresistance, making drug delivery to PanCa cells difficult. Nanomedicines combining multiple drugs can be designed to overcome this hurdle. This project aims at developing a targeted nanomedicine by using a combination of gemcitabine and paclitaxel encapsulated in polymeric nanoparticles for the treatment of PanCa. Oil/ water emulsion technique was employed for the preparation of poly (lactic-co-glycolic acid) (PLGA) nanoparticles encapsulating gemcitabine and paclitaxel. Synthesis protocols yielded drug-loaded PLGA nanoparticles with an average diameter less than 200 nm, with encapsulation efficiencies ranging from 40-70%. In vitro tests for cell viability studies using the MTT assay demonstrated lower cell viability in AsPC-1 cells when treated with these nano-formulations as compared to their free-drug counterparts. Current studies include conjugating drug-loaded PLGA-polyethylene glycol-Maleimide nanoparticles with transferrin peptide for targeted therapy, which is expected to prove more efficacious when tested for cell viability in vitro than its non-targeted formulations that have been obtained. These results therefore certify this nanotherapeutic approach as a potential therapy for PanCa.

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.